Cho hình bình hành ABCD có 2 đường chéo cắt nhau tại O. Trên đoạn OB lấy điểm E và trên đoạn OD lấy điểm K sao cho BE=DK.
a) Tứ giác AKCE là hình gì?Vì sao?
b) Hình bình hành ABCD cần có thêm điều kiện gì để tứ giác AKCE là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: Trên tia OD lấy K, trên tia OB lấy E sao cho BE=DK
Xét tứ giác AKCE có
O là trung điểm chung của AC và KE
nên AKCE là hình bình hành
b: Để AKCE là hình thoi thì AC vuông góc với EK
=>AC vuông góc với BD
1a) 5x - 5y + 3x (x - y)
= (5x - 5y) + 3x (x - y)
= 5 (x - y) + 3x (x - y)
= (5 + 3x) (x - y)
b) x2 + 2xy + y2 - 4
= (x2 + 2xy + y2) - 22
= (x + y)2 - 22
= [(x + y) + 2] [(x + y) - 2]
= (x + y + 2) (x + y - 2)
#Học tốt!!!
~NTTH~
a: Xét ΔAEB và ΔCFD có
AE=CF
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
Do đó: ΔAEB=ΔCFD
Suy ra:BE=FD
Xét ΔADE và ΔCBF có
AE=CF
\(\widehat{DAE}=\widehat{BCF}\)
AE=CF
Do đó: ΔADE=ΔCBF
Suy ra: DE=BF
Xét tứ giác BEDF có
BE=DF
DE=BF
Do đó: BEDF là hình bình hành