K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

A B C M N

a, xét tam giác ABM và tam giác ACM có:

AB=AC

AM chung

BM=CM

=> tam giác ABM= tam giác ACM (c.c.c)

b,

Tam giác ABM= tam giác ACM => góc BAM= góc CAM

=> AM là tia phân giác của góc BAC

c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC

=> A, M, N thẳng hàng

15 tháng 11 2023

còn thiếu câu b là tia AM nằm giữa 2 toa AB và AC nữa nhé

20 tháng 1 2017

A B C M N

ta có tam giác ABC cân tại A ( AB=AC)  suy ra \(\widehat{ABC}=\widehat{ACB}\)

lại có tam giác MBC cân tại M ( MB =MC ) suy ra \(\widehat{MBC}=\widehat{MCB}\)

suy ra \(\widehat{ABC}-\widehat{MBC}=\widehat{ACB}-\widehat{MCB}\)( vì tia MB nằm giữa 2 tia BA và BC ,  tia MC nằm giữa 2 tia CB và CA )

hay \(\widehat{ABM}=\widehat{ACM}\)

xét \(\Delta ABM\)và  \(\Delta ACM\)có  \(\hept{\begin{cases}AMchung\\AB=AC\left(gt\right)\\\widehat{ABM}=\widehat{ACM}\left(cmt\right)\end{cases}}\)

do đó \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)( 2 góc tương ứng )

mà tia  AM nằm giữa 2 tia AB và AC suy ra AM là phân giác góc BAC (1)

b)   xét \(\Delta ANB\)và \(\Delta ANC\)có \(\hept{\begin{cases}ANchung\\NB=NC\left(gt\right)\\AB=AC\left(gt\right)\end{cases}}\)

do đó \(\Delta ANB=\Delta ANC\left(c.c.c\right)\)

suy ra \(\widehat{BAN}=\widehat{CAN}\)( 2 góc tương ứng )

mà tia AN nằm giữa 2 tia AB và AC do đó AN là phân giác góc BAC (2)

từ (1) và (2)  suy ra AM trùng AN hay A;M:N thẳng hàng

c) xét \(\Delta MNB\)và \(\Delta MNC\)có \(\hept{\begin{cases}MB=MC\left(gt\right)\\\widehat{MBN}=\widehat{MCN}\left(cmt\right)\\BN=NC\end{cases}}\)

do đó tam giác MNB = tam giác MNC (c.g.c)

do đó \(\widehat{MNB}=\widehat{MNC}\)và \(\widehat{MNB}+\widehat{MNC}=180^o\)hay \(\widehat{MNB}=\widehat{MNC}=\frac{180^o}{2}=90^o\)hay MN vuông góc với BC và BN = NC hay MN là trung trực BC

27 tháng 11 2021

a) Xét Δ AMC và Δ AMB có:

AC = AB (gt)

AM là cạnh chung

MC = MB (gt)

⇒Δ AMC = Δ AMB (c.c.c)

⇒∠CAM = ∠BAM (2 góc tương ứng)

⇒AM là phân giác BAC ( đpcm)

b) Xét t/g ANC và t/g ANB có:

AC = AB (gt)

AN là cạnh chung

NC = NB (gt)

⇒ Δ ANC = Δ ANB (c.c.c)

⇒ ∠CAN = ∠BAN (2 góc tương ứng)

⇒ AN là phân giác BAC

Như vậy, AM và AN đều là phân giác của BAC

Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)

c)Vì Δ ANC = Δ ANB (câu b)

⇒ ∠ANC = ∠ANB (2 góc tương ứng)

Mà ∠ANC + ∠ANB = 180o ( kề bù)

Nên ∠ANC = ∠ANB = 90o

⇒AN vg BC hay MN vg BC

Mà CN = BN (gt)

Do đó, MN là đường trung trực của BC ( đpcm)

28 tháng 11 2021

Cảm ơn bn nha 

Nhưng lần sau có cả hình vẽ thì sẽ tốt hơn 😊😊😊😄😄

AH
Akai Haruma
Giáo viên
29 tháng 6

Lời giải:

Xét tam giác $BAM$ và $CAM$ có:

$BA=CA$ (giả thiết)

$AM$ chung

$MB=MC$ (giả thiết)

$\Rightarrow \triangle BAM=\triangle CAM$ (c.c.c)

$\Rightarrow \widehat{BAM}=\widehat{CAM}$

Mà $AM$ nằm giữa $AB,AC$ nên $AM$ là phân giác của $\widehat{BAC}$

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

17 tháng 10 2021

a) Xét Δ AMC và Δ AMB có:

AC = AB (gt)

AM là cạnh chung

MC = MB (gt)

⇒Δ AMC = Δ AMB (c.c.c)

⇒∠CAM = ∠BAM (2 góc tương ứng)

⇒AM là phân giác BAC ( đpcm)

b) Xét t/g ANC và t/g ANB có:

AC = AB (gt)

AN là cạnh chung

NC = NB (gt)

⇒ Δ ANC = Δ ANB (c.c.c)

⇒ ∠CAN = ∠BAN (2 góc tương ứng)

⇒ AN là phân giác BAC

Như vậy, AM và AN đều là phân giác của BAC

Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)

c)Vì Δ ANC = Δ ANB (câu b)

⇒ ∠ANC = ∠ANB (2 góc tương ứng)

Mà ∠ANC + ∠ANB = 180o ( kề bù)

Nên ∠ANC = ∠ANB = 90o

⇒AN vg BC hay MN vg BC

Mà CN = BN (gt)

Do đó, MN là đường trung trực của BC ( đpcm)

 

17 tháng 12 2022

cảm ơn ạ haha

28 tháng 1 2023

Xét `\triangle AMB` và `\triangle AMC` có:

   `{:(AB=AC),(MB=MC),(AM\text{ là cạnh chung}):}}=>`

`=>\triangle AMB =\triangle AMC` (c-c-)

    `=>\hat{BAM}=\hat{CAM}`

 `=>AM` là tia phân giác của `\hat{BAC}`

29 tháng 1 2023

có hình không ạ ?