K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

23423

2 tháng 10 2017

hả ngĩa là j

a: Xét (O) có 

OH là một phần đường kính

DE là dây

OH\(\perp\)DE tại H

Do đó: H là trung điểm của DE

Xét tứ giác CDAE có 

H là trung điểm của đường chéo DE

H là trung điểm của đường chéo CA

Do đó: CDAE là hình bình hành

mà CA\(\perp\)DE

nên CDAE là hình thoi

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

Xét tứ giác AECK có \(\widehat{AEC}+\widehat{AKC}=90^0+90^0=180^0\)

nên AECK là tứ giác nội tiếp

b: Xét ΔIAB có

BK,IE là các đường cao

BK cắt IE tại C

Do đó: C là trực tâm của ΔIAB

=>AC\(\perp\)IB tại D

Xét tứ giác CEBD có \(\widehat{CEB}+\widehat{CDB}=90^0+90^0=180^0\)

nên CEBD là tứ giác nội tiếp

Xét tứ giác AKCE có \(\widehat{AKC}+\widehat{AEC}=90^0+90^0=180^0\)

nên AKCE là tứ giác nội tiếp

Xét tứ giác IKCD có \(\widehat{IKC}+\widehat{IDC}=90^0+90^0=180^0\)

nên IKCD là tứ giác nội tiếp

Ta có: \(\widehat{DKC}=\widehat{DIC}\)(DIKC nội tiếp)

\(\widehat{EKC}=\widehat{EAC}\)(KAEC nội tiếp)

mà \(\widehat{DIC}=\widehat{EAC}\left(=90^0-\widehat{DBA}\right)\)

nên \(\widehat{DKC}=\widehat{EKC}\)

=>KC là phân giác của góc DKE

Ta có: \(\widehat{KDC}=\widehat{KIC}\)(DIKC là tứ giác nội tiếp)

\(\widehat{EDC}=\widehat{EBC}\)(EBDC nội tiếp)

mà \(\widehat{KIC}=\widehat{EBC}\left(=90^0-\widehat{KAB}\right)\)

nên \(\widehat{KDC}=\widehat{EDC}\)

=>DC là phân giác của góc KDE

Xét ΔKED có

DC,KC là các đường phân giác

Do đó: C là tâm đường tròn nội tiếp ΔKED

=>C cách đều ba cạnh của ΔKED