Cho tam giác ABC có trung tuyến AM, \(\widehat{AMB}=\alpha\), AC=b, AB=c, S là diện tích tam giác ABC. Chứng minh rằng với \(0^0< \alpha< 90^0\)thì b>c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(sinA+cosA\right)^2=sin^2A+cos^2A+2sinAcosA=1+2sinAcosA\)
vì tam giác \(ABC\)nhọn nên \(0^o< \widehat{A}< 90^o\)nên \(sinA>0,cosA>0\Rightarrow2sinAcosA>0\)
nên \(\left(sinA+cosA\right)^2>1\Leftrightarrow sinA+cosA>1\)do \(sinA>0,cosA>0\).
b) Kẻ đường cao \(AH\).
Đặt \(HB=x\Rightarrow HC=a-x\).
Xét tam giác \(AHB\)vuông tại \(H\): \(AH=HB.tan\widehat{ABH}=xtan45^o=x\)
Xét tam giác \(AHC\)vuông tại \(H\): \(AH=HCtan\widehat{ACH}=\left(a-x\right)tan60^o=\sqrt{3}\left(a-x\right)\)
Ta có: \(x=\sqrt{3}\left(a-x\right)\Leftrightarrow x=\frac{\sqrt{3}}{1+\sqrt{3}}a\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\frac{\sqrt{3}}{1+\sqrt{3}}a.a=\frac{3-\sqrt{3}}{4}a^2\).
Bài 1:
a) tan83° - cotg7° = cotg7° - cotg7° = 0
b) cos\(^2\)20° + cos\(^2\)40° + cos\(^2\)50° + cos\(^2\)70°
= sin\(^2\)70° + cos\(^2\)40° + sin\(^2\)40° + cos\(^2\)70°
= (sin\(^2\)70° + cos\(^2\)70°) + (sin\(^2\)40° + cos\(^2\)40°)
= 1 + 1
= 2
Tham khảo:
a) Ta có: \(\widehat {AMB} + \widehat {AMC} = {180^o}\)
\( \Rightarrow \cos \widehat {AMB} = - \cos \widehat {AMC}\)
Hay \(\cos \widehat {AMB} + \cos \widehat {AMC} = 0\)
b) Áp dụng định lí cos trong tam giác AMB ta có:
\(\begin{array}{l}A{B^2} = M{A^2} + M{B^2} - 2MA.MB\;\cos \widehat {AMB}\\ \Leftrightarrow M{A^2} + M{B^2} - A{B^2} = 2MA.MB\;\cos \widehat {AMB}\;\;(1)\end{array}\)
Tương tự, Áp dụng định lí cos trong tam giác AMB ta được:
\(\begin{array}{l}A{C^2} = M{A^2} + M{C^2} - 2MA.MC\;\cos \widehat {AMC}\\ \Leftrightarrow M{A^2} + M{C^2} - A{C^2} = 2MA.MC\;\cos \widehat {AMC}\;\;(2)\end{array}\)
c) Từ (1), suy ra \(M{A^2} = A{B^2} - M{B^2} + 2MA.MB\;\cos \widehat {AMB}\;\)
Từ (2), suy ra \(M{A^2} = A{C^2} - M{C^2} + 2MA.MC\;\cos \widehat {AMC}\;\)
Cộng vế với vế ta được:
\(2M{A^2} = \left( {A{B^2} - M{B^2} + 2MA.MB\;\cos \widehat {AMB}} \right)\; + \left( {A{C^2} - M{C^2} + 2MA.MC\;\cos \widehat {AMC}} \right)\;\)
\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - M{B^2} - M{C^2} + 2MA.MB\;\cos \widehat {AMB} + 2MA.MC\;\cos \widehat {AMC}\)
Mà: \(MB = MC = \frac{{BC}}{2}\) (do AM là trung tuyến)
\( \Rightarrow 2M{A^2} = A{B^2} + A{C^2} - {\left( {\frac{{BC}}{2}} \right)^2} - {\left( {\frac{{BC}}{2}} \right)^2} + 2MA.MB\;\cos \widehat {AMB} + 2MA.MB\;\cos \widehat {AMC}\)
\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - 2.{\left( {\frac{{BC}}{2}} \right)^2} + 2MA.MB\;\left( {\cos \widehat {AMB} + \;\cos \widehat {AMC}} \right)\)
\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - {\frac{{BC}}{2}^2}\)
\(\begin{array}{l} \Leftrightarrow M{A^2} = \frac{{A{B^2} + A{C^2} - {{\frac{{BC}}{2}}^2}}}{2}\\ \Leftrightarrow M{A^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\end{array}\) (đpcm)
Cách 2:
Theo ý a, ta có: \(\cos \widehat {AMC} = - \cos \widehat {AMB}\)
Từ đẳng thức (1): suy ra \(\cos \widehat {AMB} = \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}\)
\( \Rightarrow \cos \widehat {AMC} = - \cos \widehat {AMB} = - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}\)
Thế \(\cos \widehat {AMC}\)vào biểu thức (2), ta được:
\(M{A^2} + M{C^2} - A{C^2} = 2MA.MC.\left( { - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} \right)\)
Lại có: \(MB = MC = \frac{{BC}}{2}\) (do AM là trung tuyến)
\(\begin{array}{l} \Rightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} = 2MA.MB.\left( { - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} \right)\\ \Leftrightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} = - \left( {M{A^2} + M{B^2} - A{B^2}} \right)\\ \Leftrightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} + M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{B^2} = 0\\ \Leftrightarrow 2M{A^2} - A{B^2} - A{C^2} + {\frac{{BC}}{2}^2} = 0\\ \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - {\frac{{BC}}{2}^2}\\ \Leftrightarrow M{A^2} = \frac{{A{B^2} + A{C^2} - {{\frac{{BC}}{2}}^2}}}{2}\\ \Leftrightarrow M{A^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\end{array}\)
a) Xét t/giác ABM và t.giác ACM
có: AB = AC (gt)
AM : chung
BM = MC (gt)
=> t/giác ABM = t/giác ACM (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc t/ứng)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(kề bù)
=> \(\widehat{AMB}=\widehat{AMC}=90^0\)
=> AM vuông góc với BC
b) Ta có: BM = MC = 1/2BC = 1/2.32 = 16 (cm)
Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:
\(AB^2=AM^2+BM^2\)
=> AM2 = AB2 - BM2 = 342 - 162 = 900
=> AM = 30 (cm)
c) Chu vi t/giác AMB = 34 + 16 + 30 = 80 (cm)
Diện tích t/giác ABM là: 30 x 16 : 2 = 240 (cm2)