K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
10 tháng 7 2021

a) \(\left(sinA+cosA\right)^2=sin^2A+cos^2A+2sinAcosA=1+2sinAcosA\)

vì tam giác \(ABC\)nhọn nên \(0^o< \widehat{A}< 90^o\)nên \(sinA>0,cosA>0\Rightarrow2sinAcosA>0\)

nên \(\left(sinA+cosA\right)^2>1\Leftrightarrow sinA+cosA>1\)do \(sinA>0,cosA>0\).

b) Kẻ đường cao \(AH\).

Đặt \(HB=x\Rightarrow HC=a-x\).

Xét tam giác \(AHB\)vuông tại \(H\)\(AH=HB.tan\widehat{ABH}=xtan45^o=x\)

Xét tam giác \(AHC\)vuông tại \(H\)\(AH=HCtan\widehat{ACH}=\left(a-x\right)tan60^o=\sqrt{3}\left(a-x\right)\)

Ta có: \(x=\sqrt{3}\left(a-x\right)\Leftrightarrow x=\frac{\sqrt{3}}{1+\sqrt{3}}a\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\frac{\sqrt{3}}{1+\sqrt{3}}a.a=\frac{3-\sqrt{3}}{4}a^2\).

2 tháng 8 2019

Bài 1:

a) tan83° - cotg7° = cotg7° - cotg7° = 0

b) cos\(^2\)20° + cos\(^2\)40° + cos\(^2\)50° + cos\(^2\)70°

= sin\(^2\)70° + cos\(^2\)40° + sin\(^2\)40° + cos\(^2\)70°

= (sin\(^2\)70° + cos\(^2\)70°) + (sin\(^2\)40° + cos\(^2\)40°)

= 1 + 1

= 2

2 tháng 8 2019

Bài 1 c) để mình suy nghĩ

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\widehat {AMB} + \widehat {AMC} = {180^o}\)

\( \Rightarrow \cos \widehat {AMB} =  - \cos \widehat {AMC}\)

Hay \(\cos \widehat {AMB} + \cos \widehat {AMC} = 0\)

b) Áp dụng định lí cos trong tam giác AMB ta có:

 \(\begin{array}{l}A{B^2} = M{A^2} + M{B^2} - 2MA.MB\;\cos \widehat {AMB}\\ \Leftrightarrow M{A^2} + M{B^2} - A{B^2} = 2MA.MB\;\cos \widehat {AMB}\;\;(1)\end{array}\)

Tương tự, Áp dụng định lí cos trong tam giác AMB ta được:

\(\begin{array}{l}A{C^2} = M{A^2} + M{C^2} - 2MA.MC\;\cos \widehat {AMC}\\ \Leftrightarrow M{A^2} + M{C^2} - A{C^2} = 2MA.MC\;\cos \widehat {AMC}\;\;(2)\end{array}\)

c) Từ (1), suy ra \(M{A^2} = A{B^2} - M{B^2} + 2MA.MB\;\cos \widehat {AMB}\;\)

Từ (2), suy ra \(M{A^2} = A{C^2} - M{C^2} + 2MA.MC\;\cos \widehat {AMC}\;\)

Cộng vế với vế ta được:

\(2M{A^2} = \left( {A{B^2} - M{B^2} + 2MA.MB\;\cos \widehat {AMB}} \right)\; + \left( {A{C^2} - M{C^2} + 2MA.MC\;\cos \widehat {AMC}} \right)\;\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - M{B^2} - M{C^2} + 2MA.MB\;\cos \widehat {AMB} + 2MA.MC\;\cos \widehat {AMC}\)

Mà: \(MB = MC = \frac{{BC}}{2}\) (do AM là trung tuyến)

\( \Rightarrow 2M{A^2} = A{B^2} + A{C^2} - {\left( {\frac{{BC}}{2}} \right)^2} - {\left( {\frac{{BC}}{2}} \right)^2} + 2MA.MB\;\cos \widehat {AMB} + 2MA.MB\;\cos \widehat {AMC}\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - 2.{\left( {\frac{{BC}}{2}} \right)^2} + 2MA.MB\;\left( {\cos \widehat {AMB} + \;\cos \widehat {AMC}} \right)\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - {\frac{{BC}}{2}^2}\)

\(\begin{array}{l} \Leftrightarrow M{A^2} = \frac{{A{B^2} + A{C^2} - {{\frac{{BC}}{2}}^2}}}{2}\\ \Leftrightarrow M{A^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\end{array}\) (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Cách 2:

Theo ý a, ta có: \(\cos \widehat {AMC} =  - \cos \widehat {AMB}\)

Từ đẳng thức (1): suy ra \(\cos \widehat {AMB} = \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}\)

 \( \Rightarrow \cos \widehat {AMC} =  - \cos \widehat {AMB} =  - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}\)

Thế \(\cos \widehat {AMC}\)vào biểu thức (2), ta được:

\(M{A^2} + M{C^2} - A{C^2} = 2MA.MC.\left( { - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} \right)\)

Lại có: \(MB = MC = \frac{{BC}}{2}\) (do AM là trung tuyến)

\(\begin{array}{l} \Rightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} = 2MA.MB.\left( { - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} \right)\\ \Leftrightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} =  - \left( {M{A^2} + M{B^2} - A{B^2}} \right)\\ \Leftrightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} + M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{B^2} = 0\\ \Leftrightarrow 2M{A^2} - A{B^2} - A{C^2} + {\frac{{BC}}{2}^2} = 0\\ \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - {\frac{{BC}}{2}^2}\\ \Leftrightarrow M{A^2} = \frac{{A{B^2} + A{C^2} - {{\frac{{BC}}{2}}^2}}}{2}\\ \Leftrightarrow M{A^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\end{array}\)

26 tháng 4 2020

A B C M

a) Xét t/giác ABM và t.giác ACM

có: AB = AC (gt)

AM : chung

BM = MC (gt)

=> t/giác ABM = t/giác ACM (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc t/ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^0\)

=> AM vuông góc với BC

b) Ta có: BM = MC = 1/2BC = 1/2.32 = 16 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:

\(AB^2=AM^2+BM^2\)

=> AM2 = AB2 - BM2 = 342 - 162 = 900

=> AM = 30 (cm)

c) Chu vi t/giác AMB = 34 + 16 + 30 = 80 (cm)

Diện tích t/giác ABM là: 30 x 16 : 2 = 240 (cm2)