K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Đặt số đo góc B là x, số đo góc C là y

Theo đề, ta có:

\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)

a: góc ABC+góc ACB=180-60=120 độ

=>góc IBC+góc ICB=60 độ

=>góc BIC=120 độ

b: góc BIE=góc DIC=60 độ

Xét ΔEBIvà ΔFBI có

BE=BF

góc EBI=góc FBI

BI chung

Do đo: ΔEBI=ΔFBI

=>góc EIB=góc FIB=60 độ

=>góc FIC=60 độ

=>góc FIC=góc DIC

Xét ΔFCI và ΔDCI có

góc FIC=góc DIC

IC chung

góc ICF=góc ICD

Do đó; ΔFCI=ΔDCI

2 tháng 9 2021

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{32}=4\sqrt{2}\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\)cm 

* Áp dụng hệ thức :\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)cm 

-> HC = BC - HB = 4\(\sqrt{2}\)- 2\(\sqrt{2}\) = 2 \(\sqrt{2}\)
sinB = \(\dfrac{AC}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

cosB = \(\dfrac{AB}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

tanB = \(\dfrac{AC}{AB}=\dfrac{4}{4}=1\)

cotaB = \(\dfrac{AB}{AC}=\dfrac{4}{4}=1\)

tương tự với tỉ số lượng giác ^C 

b, bạn cần cm cái gì ? ;-; 

b: Xét tứ giác AEHD có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: AEHD là hình chữ nhật

Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB

nên \(BD\cdot DA=DH^2\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(CE\cdot EA=EH^2\)

Xét ΔEHD vuông tại H, ta được:

\(ED^2=EH^2+HD^2\)

hay \(ED^2=DA\cdot DB+EA\cdot EC\)

a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)

Suy ra: BA=BH(hai cạnh tương ứng) và AD=HD(Hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AD=HD(cmt)

nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

\(\Leftrightarrow AH\perp BD\)(đpcm)

b) Xét ΔDAH có DA=DH(cmt)

nên ΔDAH cân tại D(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{DAH}=\dfrac{180^0-\widehat{ADH}}{2}\)(Số đo của một góc ở đáy trong ΔDAH cân tại D)

\(\Leftrightarrow\widehat{DAH}=\dfrac{180^0-110^0}{2}=35^0\)

Ta có: \(\widehat{BAH}+\widehat{DAH}=\widehat{BAD}\)(tia AH nằm giữa hai tia AD,AB)

\(\Leftrightarrow\widehat{BAH}+35^0=90^0\)

hay \(\widehat{BAH}=55^0\)

Vậy: \(\widehat{BAH}=55^0\)