K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(1,\\ a,\left\{{}\begin{matrix}AC\perp AB\\BD\perp AB\end{matrix}\right.\Rightarrow AC//BD\\ b,AC//BD\Rightarrow\widehat{D_2}=\widehat{C_1}=57^0\left(đồng.vị\right)\\ \widehat{D_2}+\widehat{D_1}=180^0\left(kề.bù\right)\Rightarrow\widehat{D_1}=180^0-57^0=123^0\\ c,AC//BD\Rightarrow\widehat{D_1}=\widehat{C_1}=123^0\left(đồng.vị\right)\)

14 tháng 10 2021

\(2,\\ \widehat{DAB}+\widehat{ABE}=50^0+130^0=180^0\)

Mà 2 góc này ở vị trí TCP nên AD//BE (1)

\(\widehat{EBC}+\widehat{BCG}=140^0+40^0=180^0\)

Mà 2 góc này ở vị trí TCP nên BE//CG (2)

Từ (1)(2) ta được AD//CG

19 tháng 12 2021

#include <bits/stdc++.h>

using namespace std;

double a,b;

int main()

{

cin>>a>>b;

cout<<(a+b)*2;

return 0;

}

26 tháng 8 2016

99+98=197

bn k cho m nha,

17 tháng 10 2021

b: \(\dfrac{2x^3-3x^2+6x-9}{2x-3}=x^2+3\)

4 tháng 8 2023

a, 7+4+1=12 => Để số chia hết cho 9 thì * = 18 - 12= 6

b, 5+2+2=9 => Để số chia hết cho 3 thì *=3 hoặc *=6 hoặc *=9 hoặc *=0

c, * ở hàng đơn vị chia hết cho 2 và 5 => * hàng đơn vị: 0

1+8+2+0 =11. Để số chia hết cho 3 và 9 => * ở hàng nghìn là: 18 - 11 = 7

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(AB^2+AD^2=BD^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

hay BD=10(cm)

Ta có: ABCD là hình chữ nhật

mà O là giao điểm của hai đường chéo AC và BD

nên O là trung điểm chung của AC và BD

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(AH\cdot BD=AB\cdot AD\)

\(\Leftrightarrow AH=4.8\left(cm\right)\)

Ta có: ΔABD vuông tại A

mà AO là đường trung tuyến ứng với cạnh huyền BD

nên \(AO=\dfrac{BD}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHO vuông tại H, ta được:

\(AO^2=AH^2+HO^2\)

\(\Leftrightarrow HO^2=5^2-4.8^2=1.96\)

hay HO=1,4(cm)

Diện tích tam giác AHO là:

\(S_{AHO}=\dfrac{HA\cdot HO}{2}=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)

26 tháng 2 2022

a, \(2y^2\left(8y^6\right)y=16y^9\)

b, \(=\dfrac{3}{4}x^3y^4\)

c, \(=10x^3y^4z^8\)

d, \(=\left(\dfrac{3}{4}x^2y^3\right)\left(\dfrac{12}{5}x^4\right)=\dfrac{9}{5}x^6y^3\)

e, \(=-\dfrac{5}{4}x^5y^{10}\)

f, \(=120x^4y^6z^4\)

a: Xét ΔABH vuông tại H và ΔMBH vuông tại H có 

HB chung

HA=HM

Do đó: ΔABH=ΔMBH

10 tháng 10 2021

\(a,\Rightarrow20\cdot2^x=160+1-1\\ \Rightarrow2^x=160:20=8=2^3\\ \Rightarrow x=3\\ b,\Rightarrow\left(4-x:2\right)^3=2\left(8-5\right)+1+1\\ \Rightarrow\left(4-x:2\right)^3=6+2=8=2^3\\ \Rightarrow4-x:2=2\\ \Rightarrow x:2=2\Rightarrow x=4\\ c,n\left(n+2017\right)\)

Với n chẵn thì \(n=2k\left(k\in N\right)\Rightarrow n\left(n+2017\right)=2k\left(n+2017\right)⋮2\)

Với n lẻ thì \(n=2k+1\left(k\in N\right)\Rightarrow n\left(n+2017\right)=n\left(2k+2018\right)=2n\left(k+1009\right)⋮2\)

Vậy \(n\left(n+2017\right)\) luôn chẵn

\(d,3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)