tìm số tự nhiên nhỏ nhất chia 3:4:5 thì có số dư lần lượt là 1,3,1
nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TICK CHO MÌNH NHA
Trả lời:
Gọi số tự nhiên đó là a
Ta có: a:6, 5, 4, 3, 2 dư 5, 4, 3, 2, 1
➩ a+1 chia hết cho 6, 5, 4, 3, 2
➩ a+1 =60
➩ a=59
Gọi n là số cần tìm.
Ta có: n – 1 là bội của 3, n – 3 là bội của 4, n – 1 là bội của 5
Suy ra: 2( n – 1) ⋮ 3 ;
2(n – 3) ⋮ 4 ;
2(n – 1) ⋮ 5
Do đó: 2n chia cho 3, 4, 5 đều dư 2. Nên 2n – 2 là BCNN của 3, 4, 5
2n – 2 = 60 ⇒ n = 31.
Gọi n là số cần tìm.
Ta có: n – 1 là bội của 3, n – 3 là bội của 4, n – 1 là bội của 5
Suy ra: 2( n – 1) ⋮ 3 ;
2(n – 3) ⋮ 4 ;
2(n – 1) ⋮ 5
Do đó: 2n chia cho 3, 4, 5 đều dư 2. Nên 2n – 2 là BCNN của 3, 4, 5
2n – 2 = 60 ⇒ n = 31.
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Gọi số phải tìm là x, ta có 2x-1 chia hết cho 5,7,9,11
=> 2x-1 là bội chung của 5,7,9,11
BCNN(5;7;9;11)=3465
Biến đổi và đưa ra x nhỏ nhất có 9 chữ số:100001633; x lớn nhất có 9 chữ số là:999997268
gọi số cần tìm là a ( a nhỏ nhất . a khác 0 )
ta có a = 3m+2 ( m thuộc N ) => 2a = 6m +4 , chia 3 dư 1
a = 5n +3 ( n thuộc N) => 2a = 10n + 6 , chia 5 dư 1
a = 7p + 4 ( p thuộc N) => 2a = 14p +8 , chia 7 dư 1
do đó 2a - 1 thuộc BC( 3 , 5, 7) . Để a nhỏ nhất thì 2a - 1 = BCNN( 3 ,5,7) = 105 => 2a - 1 = 105 => 2a = 106 =>a =53
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Gọi số tự nhiên nhỏ nhất là x
Theo đề, ta có:
x-3 thuộc B(5) và x-4 thuộc B(7) và x-5 thuộc B(9)
mà x nhỏ nhất
nên x=158
Gọi số tự nhiên cần tìm là a.
Vì a:3 dư 1 => a+2 chia hết cho 3 => a+2+27 chia hết cho 3
=> a+29 chia hết cho 3
a:4 dư 3 => a+1 chia hết cho 4 => a+1+28 chia hết cho 4
=> a+29 chia hết cho 4
a:5 dư 1 => a+4 chia hết cho 5 => a+4+25 chia hết cho 5
=> a+29 chia hết cho 5
=> a+29 thuộc BC(3; 4; 5)
BCNN(3; 4; 5) = 3.4.5 = 60
a+29 thuộc {0; 60; 180;...}
=> a thuộc {-29; 31; 151;...}
Mà a là số tự nhiên nhỏ nhất => a = 31
Vậy số tự nhiên cần tìm là 31
Các chỗ gạch chân bạn ghi kí hiệu nhé!