Tìm m để hàm số y = (2m -3)x +3 là hàm số bậc nhất:
A m # 3/2 B m=3/2 C m=2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để hàm số là hàm bậc nhất thì \(\left(-m^2+m-2\right)\ne0\)
\(\Rightarrow-\left(m-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\ne0\) (luôn đúng vì \(-\left(m-\dfrac{1}{2}\right)^2\le0\forall m\))
Vậy hàm số luôn là hàm bậc nhất.
b,Để hàm số là hàm bậc nhất thì \(\left\{{}\begin{matrix}2m^2-6m=0\\2m+3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=0\\m=3\\m\ne-\dfrac{3}{2}\end{matrix}\right.\left(tm\right)\)
Vậy hàm số là hàm bậc nhất khi m ∈ {0;3}.
a: y=m^2x-4mx+8m+4x+3
=x(m^2-4m+4)+8m+3
Để đây là hàm số bậc nhất thì m^2-4m+4<>0
=>(m-2)^2<>0
=>m-2<>0
=>m<>2
b: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}2018-2m>=0\\\sqrt{2018-2m}< >0\end{matrix}\right.\Leftrightarrow2018-2m>0\)
=>2m<2018
=>m<1009
a: Để hàm số là hàm số bậc nhất thì m-2>0
hay m>2
b: Để hàm số là hàm số bậc nhất thì \(\left(m-1\right)\left(m+1\right)>0\)
hay \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
Hàm số y = m + 1 m − 2 x + 2 m – 3 là hàm số bậc nhất khi
m + 1 m − 2 ≠ 0 m − 2 ≠ 0 ⇔ m + 1 ≠ 0 m ≠ 2 ⇔ m ≠ − 1 m ≠ 2
Đáp án cần chọn là: C
a,để đồ thị hàm số là hai đường thẳng song song thì\(\left\{{}\begin{matrix}m+1=2m-3\\3\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
b,để đồ thị hàm số là hai dường thẳng cắt nhau thì \(m+1\ne2m-3\Leftrightarrow m\ne2\)
\(Ta.có:y=ax+b\)
HSĐB khi a>0 ; HSNB khi a<0
Từ đây em giải các a ra thôi nè!
a: Để hàm số đồng biến thì 2m-10>0
=>2m>10
=>m>5
b: Để hàm số đồng biến thì 2-5m>0
=>5m<2
=>m<2/5
c: Để hàm số nghịch biến thì 3-7m<0
=>7m>3
=>m>3/7
d:
\(y=m\left(3-2x\right)+x-2\)
\(=3m-2mx+x-2\)
\(=x\left(-2m+1\right)+3m-2\)
Để hàm số nghịch biến thì -2m+1<0
=>-2m<-1
=>m>1/2
e: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m>=0\\3-\sqrt{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m\ne9\end{matrix}\right.\)
f: Để đây là hàm số bậc nhất thì
\(\left\{{}\begin{matrix}m-2>=0\\\sqrt{m-2}-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\\sqrt{m-2}< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=2\\m-2< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\m< >3\end{matrix}\right.\)
g: Để hàm số đồng biến thì \(m^2+6m+9>0\)
=>\(\left(m+3\right)^2>0\)
=>m+3<>0
=>m<>-3
h: Để đây là hàm số bậc nhất thì \(\dfrac{m-1}{m-4}\ne0\)
=>\(m\notin\left\{1;4\right\}\)
A