Cho phương trình z 2 - 4 z 2 - 3 z 2 - 4 z - 40 = 0 . Gọi z 1 ; z 2 ; z 3 và z 4 là bốn nghiệm của phương trình đã cho. Tính giá trị của biểu thức P = z 1 2 + z 2 2 + z 3 3 + z 4 2
A. 33
B. 34.
C. 35
D. 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(z\ne2\)
\(\left(\dfrac{z^2+2z+4}{z-2}\right)^2+7+\dfrac{\left(z-2\right)\left(z^2+2x+4\right)}{\left(z-2\right)^2}=0\)
\(\Leftrightarrow\left(\dfrac{z^2+2z+4}{z-2}\right)^2+\dfrac{z^2-2z+4}{z-2}+7=0\)
Đặt \(\dfrac{z^2+2z+4}{z-2}=x\)
\(\Rightarrow x^2+x+7=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}=0\)
Pt đã cho vô nghiệm
Rõ ràng \(x=y=z=0\) là nghiệm của hệ
Với \(xyz\ne0\), Ta có
\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)
\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)
\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)
Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)
Từ pt thứ nhất của hệ suy ra
\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)
Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)
\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)
Phương trình (P):
\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)
Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).
Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:
3x - 2y - z + d = 0, trong đó d là vế tự do.
Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):
3(1) -2(0) - (1) + d = 0
⇒ d = -2
Vậy phương trình của mặt phẳng (P) là:
3x - 2y - z - 2 = 0,
và đáp án là B.
Chọn C.
Đặt t = z2 + z; Phương trình đã cho trở thành
Với
Với
Vậy phương trình đã cho có 4 nghiệm.
Phương trình đã cho tương đương với
z 2 - 4 z = - 5 z 2 - 4 z = 8 ⇔ z 2 - 4 z + 5 = 0 z 2 - 4 z - 8 = 0 ⇔ z = 2 ± i z = 2 - 2 2 z = 2 + 2 3
Khi đó P = z 1 2 + z 2 2 + z 3 3 + z 4 2 = 34
Đáp án B