Một khối lập phương lớn tạo bởi 27 khối lập phương đơn vị. Một mặt phẳng vuông góc với đường chéo của khối lập phương lớn tại trung điểm của nó. Mặt phẳng này cắt ngang (không đi qua đỉnh) bao nhiêu khối lập phương đơn vị?
A. 16
B. 17
C. 18
D. 19
Đáp án D
Giả sử các đỉnh của khối lập phương đơn vị là (i;j;k) với i;j;k ∈ {0;1;2;3}và đường chéo đang xét của khối lập phương lớn nối hai đỉnh O(0;0;0) và A(3;3;3)
Phương trình mặt phẳng trung trực OA là (α): x + y + x – 9 2 = 0
Mặt phẳng này cắt khối lập phương đơn vị khi các đầu mút (i;j;k) và (i+1;j+1;k+1) của đường chéo của khối lập phương đơn vị nằm về hai phía đối với (α). Do đó bài toán quy về đếm trong số 27 bộ (i;j;k), với bộ số i;j;k ∈ {0;1;2}thỏa mãn
Các bộ 3 không thỏa mãn điều kiện (*) là
Do đó có 27 – 8 =19 khối lập phương đơn vị bị cắt bởi (α)