Cho M bằng a mu 2 cộng a cộng 1 a thuộc N tìm a chia hết cho năm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 12 + 14 + 16 + \(x\)
A ⋮ 2 ⇔ \(x\) ⋮ 2
\(x\) = 2k (k \(\in\) N)
A = 12 + 14 + 16 + \(x\)
A không chia hết cho 2 khi \(x\) không chia hết cho 2
\(x\) = 2k + 1 (k \(\in\) N)
a, n+6 \(⋮n+2\)
\(\Rightarrow n+2+4⋮n+2\)
Mà n+2 \(⋮n+2\)
=> \(4⋮n+2\)
\(\Rightarrow n+2\inư\left(4\right)\in\left\{1,2,4\right\}\)
Ta có bảng:
n+2 | 1 | 2 | 4 |
n | / | 0 | 2 |
Vậy n = 0;2
Bài 4:
Ta có:
M=1+7+72+...+781
M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)
M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)
M=400+74.400+...+778.400
M=400.(1+74+...+778)
\(\Rightarrow\)M=......0
Vậy chữ số tận cùng của M là chữ số 0
Bài 5:
a)Ta có:
M=1+2+22+...+2206
M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)
M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)
M=7+23.7+...+2204.7
M=7.(1+23+...+2204)\(⋮\)7
Vậy M chia hết cho 7
c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:
Ta có:
M=1+2+22+...+2206
2M=2+22+23+...+2207
2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)
M=2+22+23+...+2207-1-2-22-...-2206
\(\Rightarrow\)M=2207-1
M+1=2207-1+1
M+1=2207
Ta có:
M+1=2x
2x=M+1
2x=2207
x=2207:2
x=\(\frac{2^{207}}{2}\)
Bài 6:
Ta có:
A=(1+3+32)+(33+34+35)+...+(357+358+359)
A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)
A=13+33.13+...+357.13
A=13.(1+33+..+357)\(⋮\)13
Vậy A chia hết cho 13
mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha
a) \(s=66+x\) mà \(s⋮6\)=> x=66,132...
b) \(s=66+x\)mà s\(̸⋮\)3 => x=1,2,...
mk nhé
Để xác định số dư của phép chia số A cho 2, ta cần biết giá trị của A. Theo đề bài, A = m^2 + m + 3n, với m là một số nguyên và n là một số tự nhiên. Để xác định số dư của A khi chia cho 2, ta có thể xét các trường hợp: 1. Nếu m là số chẵn, thì m^2 cũng là số chẵn. Khi cộng thêm m và 3n, tổng này vẫn là số chẵn. Do đó, số dư của A khi chia cho 2 là 0. 2. Nếu m là số lẻ, thì m^2 cũng là số lẻ. Khi cộng thêm m và 3n, tổng này có thể là số chẵn hoặc số lẻ tùy thuộc vào giá trị của n. Do đó, số dư của A khi chia cho 2 có thể là 0 hoặc 1. Vậy, số dư của phép chia số A cho 2 có thể là 0 hoặc 1, tùy thuộc vào giá trị của m và n.