Chứng minh rằng:\(A=2^{20}-2^{17}\)chia hết cho \(7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 220 - 217 = 217.( 23 - 1 )
= 217. ( 8 - 1 )
= 217. 7 chia hết cho 7
Vậy 220 - 217 chia hết cho 7
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
a)
Ta có :
106 + 57
= (2 x 5)6 + 57
= 26 x 56 + 57
= 26 x 56 + 56 x 5
= 56 x (26 + 5)
= 56 x 69
Vì 69 ⋮ 69 => 56 ⋮ 69 => 106 + 57 ⋮ 69
b)
Ta có :
220 - 217
= 217 x 23 - 217 x 1
= 217 x (23 - 1)
= 217 x 7
Vì 7 ⋮ 7 => 217 x 7 ⋮ 7 => 220 - 217 ⋮ 7
k nha bn !!!
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
A = 220 - 217 = 217(23 - 1) = 217.7 chia hết cho 7 (đpcm)