Cho tam giác ABC nhọn . Gọi D, E lần lượt là trung điểm AB, AC.
a) Chứng
minh tứ giác DECB là hình thang.
b) Trên
tia DE lấy I sao cho E là trung điểm của DI. Chứng minh tứ giác ADCI là hình
bình hành.
c) Chứng
minh tứ giác BDIC là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: I và D đối xứng nhau qua AB
nên AB là đường trung trực của DI
Suy ra: AD=AI
hay AB là tia phân giác của \(\widehat{IAD}\)
Ta có: I và E đối xứng nhau qua AC
nên AC là đường trung trực của IE
Suy ra: AI=AE
hay AC là tia phân giác của \(\widehat{EAI}\)
Ta có: \(\widehat{EAD}=\widehat{EAI}+\widehat{DAI}\)
\(=2\left(\widehat{BAI}+\widehat{CAI}\right)\)
\(=2\cdot90^0=180^0\)
Suy ra:E,A,D thẳng hàng
mà AD=AE(=AI)
nên A là trung điểm của DE
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
b: Xét ΔABC có
D,F lần lượt là trung điểm của BA,BC
=>DF là đường trung bình của ΔABC
=>DF//AC và \(DF=\dfrac{AC}{2}\)
DF//AC
E\(\in\)AC
Do đó: DF//AE
Ta có: \(DF=\dfrac{AC}{2}\)
\(AE=\dfrac{AC}{2}\)
Do đó: DF=AE
Xét tứ giác ADFE có
DF//AE
DF=AE
Do đó: ADFE là hình bình hành
Xét tứ giác AFBI có
D là trung điểm chung của AB và FI
=>AFBI là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
a) Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD=BD
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên \(HE=AE=EC=\dfrac{AC}{2}\)(3)
Ta có: HD=AD
nên D nằm trên đường trung trực của AH(1)
Ta có: HE=AE
nên E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
b) Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
hay DE//HF
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{AC}{2}\)(4)
Từ (3) và (4) suy ra DF=HE
Xét tứ giác DEFH có DE//HF(cmt)
nên DEFH là hình thang
mà DF=HE(cmt)
nên DEFH là hình thang cân
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC