K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

Để phương trình đã cho có đúng một nghiệm  x ∈ 0 ; 4  thì đường thẳng  y = 2 m  cắt đồ thị hàm số  y = x 2 - 2 x - 3  trên  0 ; 4  tại một điểm duy nhất.

Lập bảng biến thiên của hàm số trên  0 ; 4

 

Dựa vào bảng biến thiên ta có:

Để phương trình đã cho có nghiệm duy nhất thuộc  0 ; 4 th

2 m = − 4 − 3 < 2 m ≤ 5 ⇔ m = − 2 − 3 2 < m ≤ 5 2

Vậy các giá trị nguyên của m thỏa mãn là m ∈ − 2 ; − 1 ; 0 ; 1 ; 2

Đáp án cần chọn là: A

3 tháng 8 2018

Đáp án C

Phương trình 

⇔ m x 2 + 2 x 3 − 2 x 2 + 2 x + 2 = 0 → t = x 2 + 2 x m t 3 − 2 t + 2 = 0      1

Ta có  f x = x 2 + 2 x , x ≤ − 3 ⇒ f x ≥ 3 ⇒ t ∈ 3 ; + ∞

Khi đó 1 ⇔ m = 2 t 2 − 2 t 3 = f t  với  t ∈ 3 ; + ∞

Có f ' t = − 4 t 3 + 6 t 4 ⇒ f t  nghịch biến trên  3 ; + ∞ ⇒ max 3 ; + ∞ f x ≤ f 3 = 4 27

Suy ra m ≤ max 3 ; + ∞ f x = 4 27 ⇒  có vô số nghiệm giá trị của m

9 tháng 8 2017

2 tháng 5 2023

\(\Delta=\left[-\left(m+3\right)\right]^2-4\left(2m+2\right)\\ =m^2+6m+9-8m-8\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

de pt co 2 no pb thi Δ >0 

<=> (m-1)^2>0

ma \(\left(m-1\right)^2\ge0\forall m\\ \Rightarrow\left(m-1\right)^2\ne0\\ \Leftrightarrow m\ne1\)

Viet: \(x1+x2=m+3\\ x1x2=2m+2\)

0<x1<x2<2\(\Rightarrow\left\{{}\begin{matrix}0< x1+x2< 4\\0< x1x1< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0< m+3< 4\\0< 2m+2< 4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-3< m< 1\\-1< m< 1\end{matrix}\right.\\ \Leftrightarrow-1< m< 1\)

 

 

4 tháng 1 2020

Đặt t = x + 2 + 2 − x

Điều kiện  t = x + 2 + 2 − x ≥ x + 2 + 2 − x = 2 ⇒ t ≥ 2

Lại có  x + 2 + 2 − x ≤ 1 2 + 1 2 . x + 2 + 2 − x = 2 2 ⇒ t ≤ 2 2

Suy ra 2 ≤ t ≤ 2 2

Ta có: t 2 = 4 + 2 4 − x 2 ⇒ 2 4 − x 2 = t 2 − 4

Phương trình trở thành: t + t 2 − 4 − 2 m + 3 = 0 ⇔ t 2 + t − 2 m − 1 = 0

⇔ t 2 + t − 1 = 2 m *

Xét hàm số f ( x ) = t 2 + t − 1 (parabol có hoành độ đỉnh x = − 1 2 ∉ 2 ; 2 2 ) trên 2 ; 2 2 , có bảng biến thiên

 

Phương trình () có nghiệm thỏa  2 ≤ t ≤ 2 2  khi  5 ≤ 2 m ≤ 7 + 2 2

⇒ 5 2 ≤ m ≤ 7 + 2 2 2

5 2 ≤ m ≤ 7 + 2 2 2 → 2 , 5 ≤ m ≤ 4 , 91

Vậy có 2 giá trị m nguyên dương là m = 3 ,   m = 4

Đáp án cần chọn là: D

9 tháng 8 2019

2 tháng 5 2017

20 tháng 12 2020

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)