tam giác abc có đường cao là 5.196 cm. tính chu vi tam giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt AB=3k,AC=4k,BC=5k (bộ ba Pitago)
cm tam giác AHB đồng dạng tam giác CAB (g-g)
ta có P AHB/P CAB=AB/BC=3k/5k=3/5 (tỉ số chu vi bằng tỉ số đồng dạng)
=> P BAC=(P AHB.5):3=(18.5):3=30cm
Chu vi tam giác ABC :
AHB + AHC = ABC
Thay số, ta được : 18+24 = 42 (cm)
Xét △AHB và △CHA có:
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ \(\widehat{HAB}\))
=> △AHB đồng dạng với △CHA (g.g)
=> \(\frac{AH}{CH}=\frac{AB}{CA}=\frac{AH+AB+HB}{CH+CA+HA}=\frac{18}{24}=\frac{3}{4}\left(1\right)\)
Xét △AHB và △CAB ta có:
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{B}\)là góc chung
=> △AHB đồng dạng với △CAB (g.g)
=> \(\frac{AH}{CA}=\frac{AB}{CB}=\frac{AH+AB+HB}{CA+CB+AB}=\frac{18}{CA+CB+AB}\left(2\right)\)
Từ (1) ta đặt AB=3k, CA=4k. Xét △ABC vuông tại A
CB2=AB2+CA2=(3k)2+(4k)2=(5k)2
nên CB=5k. Do đó: \(\frac{AB}{CB}=\frac{3}{5}\)
Từ (2) => \(\frac{3}{5}=\frac{18}{P_{\text{△}ABC}}\)
Vậy \(P_{\text{△}ABC}=18\cdot\frac{5}{3}=30\left(cm\right)\)
Gọi \(P_1,P_2,P_3\) lần lượt là chu vi của tam giác \(AHB;AHC;ABC\) ;
\(\Delta AHB\infty\Delta CHA\)suy ra
\(\frac{P_1}{P_2}=\frac{AB}{CA}\) (1)
Từ (1) , ta có:
\(\frac{AB}{AC}=\frac{18}{24}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
\(\Leftrightarrow\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{BC^2}{5^2}\)
\(\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}\Rightarrow AB:AC:BC=3:4:5\)
\(P_1:P_2:P_3=AB:AC:BC=3:4:5\)
Vậy nếu \(P_1=18cm,\) ,\(P_2=24cm\) thì \(P_3=30cm\) .
Tam giác ABH và CAH vuông và có ^BAH=^C (cùng phụ với góc B)
Nên Tam giác ABH và CAH đồng dạng (g-g) =>AB/AC = k (tỷ số đồng dạng)
Mà C(ABH) / C(CAH) = k (tỷ số chu vi bằng tỷ số đồng dạng)
suy ra 30/40 = k hay k = 3/4.
do đó AB/AC = 3/4 hay AB/3 = AC/4 = t
=> AB = 3t; AC = 4t Theo Pitago ta tính được BC = 5t.
Vậy chu vi tam giác ABC là AB+AC+BC = 3t+4t+5t = 12t.
cách 1
Đề bài có đủ điều kiện để tính. Sau khi xác định được tỷ lệ các cạnh tg ABC là a:b:c=5:4:3, đặt AB=3t, AC=4t; BC=5t (như bạn Hải đã chứng minh). Vì tam giác ABC vuông ta có AB^2=BH.BC ---> (3t)^2=BH.(5t) ---> BH=1,8.t
----> AH^2=AB^2-BH^2 =(3t)^2 -(1,8t)^2 = 9t^2 -3,24t^2 =5,76t^2 --> AH= 2,4t
Chu vi ABH=30 --> AB+BH+AH=30 --> 3t+1,8t+2,4t=30 --->7,2t=30 ---> t= 25/6
Chu vi ABC= 3t+4t+5t= 12t =12.(25/6) =50 cm
cách 2
Tam giác ABH và CAH vuông và có ^BAH=^C (cùng phụ với góc B)
Nên Tam giác ABH và CAH đồng dạng (g-g) =>AB/AC = k (tỷ số đồng dạng)
Mà C(ABH) / C(CAH) = k (tỷ số chu vi bằng tỷ số đồng dạng)
suy ra 30/40 = k hay k = 3/4.
do đó AB/AC = 3/4 hay AB/3 = AC/4 = t
=> AB = 3t; AC = 4t Theo Pitago ta tính được BC = 5t.
Vậy chu vi tam giác ABC là AB+AC+BC = 3t+4t+5t = 12t.
k mk nha!!^-^
Sau khi xác định được tỷ lệ các cạnh tg ABC là a:b:c=5:4:3, đặt AB=3t, AC=4t; BC=5t . Vì tam giác ABC vuông ta có AB^2=BH.BC => (3t)^2=BH.(5t) => BH=1,8.t
=> AH^2=AB^2-BH^2 =(3t)^2 -(1,8t)^2 = 9t^2 -3,24t^2 =5,76t^2 --> AH= 2,4t
Chu vi ABH=30 --> AB+BH+AH=30 --> 3t+1,8t+2,4t=30 --->7,2t=30 ---> t= 25/6
Chu vi ABC= 3t+4t+5t= 12t =12.(25/6) =50 cm
Đáp số : 50 cm
Đề bài có đủ điều kiện để tính. Sau khi xác định được tỷ lệ các cạnh tg ABC là a:b:c=5:4:3, đặt AB=3t, AC=4t; BC=5t (như bạn Hải đã chứng minh). Vì tam giác ABC vuông ta có AB^2=BH.BC ---> (3t)^2=BH.(5t) ---> BH=1,8.t
----> AH^2=AB^2-BH^2 =(3t)^2 -(1,8t)^2 = 9t^2 -3,24t^2 =5,76t^2 --> AH= 2,4t
Chu vi ABH=30 --> AB+BH+AH=30 --> 3t+1,8t+2,4t=30 --->7,2t=30 ---> t= 25/6
Chu vi ABC= 3t+4t+5t= 12t =12.(25/6) =50 cm
Chúc huyền luôn luôn học giỏi và sớm kiếm được nhiều k.