K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD có 

F là trung điểm của BD

E là trung điểm của AD

Do đó: FE là đường trung bình của ΔBAD

Suy ra: \(FE=\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Xét ΔDBC có 

F là trung điểm của BD

FI//BC

Do đó: I là trung điểm của DC

Xét ΔDBC có 

F là trung điểm của BD

I là trung điểm của DC

Do đó: FI là đường trung bình của ΔDBC

Suy ra: \(FI=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Ta có: \(EI=ED+DI\)

\(=\dfrac{AC}{2}=4\left(cm\right)\)

a: Xét ΔABH có BI là phân giác

nên \(\dfrac{AI}{AB}=\dfrac{IH}{BH}\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

Đề bài này chưa đủ dữ kiện để tính cụ thể AI/AB; AD/AB nha bạn

b: ΔBAD vuông tại A

=>\(\widehat{ABD}+\widehat{ADB}=90^0\)

=>\(\widehat{ADI}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\left(1\right)\)

ΔBIH vuông tại H

=>\(\widehat{HBI}+\widehat{BIH}=90^0\)

=>\(\widehat{BIH}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ADI}=\widehat{BIH}\)

mà \(\widehat{AID}=\widehat{BIH}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

=>AD=AI(3)

Xét ΔABH có BI là phân giác

nên \(\dfrac{IH}{BH}=\dfrac{AI}{AB}\left(4\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{DC}{BC}=\dfrac{DA}{AB}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{IH}{BH}=\dfrac{DC}{BC}\)

10 tháng 12 2023

1+1=2

26 tháng 4 2021

cảm ơn bạn nhévui

25 tháng 3 2019

Đề không rõ lắm bạn ơi,lần lượt tại M và N là sao? 2 điểm này đã cho trước đâu ?

16 tháng 7 2021

a) Xét tam giác DAC và BCA có: 

DAC = BCA  ( AD//BC ; 2 góc sole trong = nhau )

AC chung

AD=BC (gt)

=> tam giác DAC =  BCA ( c-g-c )

=> DC = AB ( 2 cạnh tương ứng ) 

 và DCA = BAC ( 2 góc tương ứng )

=> BA//DC ( 2 góc sole trong = nhau ) 

b) Vì AB//DC ( cma) => ABD=BDC ( 2 góc sole trong = nhau ) hay ABI = IDC 

Xét tam giác AIB và CID có :

BAI =ICD ( DCA = BAC ; cma ) 

AB = CD ( tam giác DAC=BCA ) 

ABI = IDC ( cmt ) 

=> Tam giác AIB = CID ( g-c-g ) 

=> AI = IC và BI = ID ( cạnh tương ứng )

hay I là tđ AC và BD 

 

a) Xét tứ giác ABCD có

AD//BC(gt)

AD=BC(gt)

Do đó: ABCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: DC=AB và DC//AB(Hai cạnh đối)