1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:
A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)
C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)
D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)
2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử là:
A)\(\left(x^2+5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)
B)\(\left(x^2-5ax-5a^2\right)\left(x^2+5ax+5a^2\right)\)
C)\(\left(x^2-5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)
D)\(\left(x^2+5ax+5a^2\right)^{^2}\)
3) Đa thức \(a^3+b^3+c^3-3abc\) được phân tích thành nhân tử là:
A)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)
B)\(\left(a-b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
C)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
D)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)
4) Đa thức x(x+1)(x+2)(x+3)+1 được phân tích thành nhân tử là:
A)\(\left(x^2+3x+1\right)\left(x^2+3x-1\right)\)
B)\(\left(x^2+3x+1\right)^{^2}\)
C)\(\left(x^2+3x+1\right)\left(x^2-3x+1\right)\)
D) Cả B và C đều sai
5) Câu trả lời đúng cho M=\(n^2\left(n+1\right)+2n\left(n+1\right)+360\) với \(n\in Z\)
A)M⋮4
B)M⋮5
C)M⋮6
D)M⋮9
6)Cho \(P=\left(2n+5\right)^{^2}-145\) với \(n\in N\)
A) P⋮4 ; B)P⋮3 ; C) P⋮5 ; D)P⋮6
7) Giá trị của biểu thức \(x^2-y^2-2y-1\) tại
x=502 ; y=497 là:
A) 3000
B)5000
C)4500
D) cả A và B đều sai
c) ( x2 + x + 1 )( x2 + x + 2 ) - 12
Đặt t = x2 + x + 1
<=> t( t + 1 ) - 12
= t2 + t - 12
= t2 - 3t + 4t - 12
= t( t - 3 ) + 4( t - 3 )
= ( t - 3 )( t + 4 )
= ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )
= ( x2 + x - 2 )( x2 + x + 5 )
= ( x2 - x + 2x - 2 )( x2 + x + 5 )
= [ x( x - 1 ) + 2( x - 1 ) ]( x2 + x + 5 )
= ( x - 1 )( x + 2 )( x2 + x + 5 )
d) ( x + 2 )( x + 3 )( x + 4 )( x + 5 ) - 24
= [ ( x + 2 )( x + 5 ) ][ ( x + 3 )( x + 4 ) ] - 24
= ( x2 + 7x + 10 )( x2 + 7x + 12 ) - 24
Đặt t = x2 + 7x + 10
<=> t( t + 2 ) - 24
= t2 + 2t - 24
= t2 - 4t + 6t - 24
= t( t - 4 ) + 6( t - 4 )
= ( t - 4 )( t + 6 )
= ( x2 + 7x + 10 - 4 )( x2 + 7x + 10 + 6 )
= ( x2 + 7x + 6 )( x2 + 7x + 16 )
= ( x2 + 6x + x + 6 )( x2 + 7x + 16 )
= [ x( x + 6 ) + ( x + 6 ) ]( x2 + 7x + 16 )
= ( x + 6 )( x + 1 )( x2 + 7x + 16 )
a, Sửa đề:\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
Đặt \(t=x^2+x\)
\(\Rightarrow t^2-2t-15\)
\(=t^2-5t+3t-15\)
\(=t\left(t-5\right)+3\left(t-5\right)\)
\(=\left(t+3\right)\left(t-5\right)\)
\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
b,\(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt \(t=x+y\)
\(\Rightarrow t^2-t-12\)
\(=t^2-4t+3t-12\)
\(=t\left(t-4\right)+3\left(t-4\right)\)
\(=\left(t+3\right)\left(t-4\right)\)
\(=\left(x+y+3\right)\left(x+y-4\right)\)
c,\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(t=x^2+x+1\)
\(\Rightarrow t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2-3t+4t-12\)
\(=t\left(t-3\right)+4\left(t-3\right)\)
\(=\left(t+4\right)\left(t-3\right)\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x^2-x+2x-2\right)\)
\(=\left(x^2+x+5\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
d,\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(t=x^2+7x+10\)
\(\Rightarrow t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=t^2-4t+6t-24\)
\(=t\left(t-4\right)+6\left(t-4\right)\)
\(=\left(t+6\right)\left(t-4\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+x+6x+6\right)\)
\(=\left(x^2+7x+16\right)\left[x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=\left(x^2+7x+16\right)\left(x+6\right)\left(x+1\right)\)