Cho x2+y2-xy=4
Tìm max,min x2+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)
\(\Rightarrow M\le9\)
\(M_{max}=9\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-\sqrt{3};\sqrt{3}\right);\left(\sqrt{3};-\sqrt{3}\right)\)
\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{\dfrac{1}{3}\left(x^2+y^2+xy\right)+\dfrac{2}{3}\left(x^2+y^2-2xy\right)}{x^2+y^2+xy}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\)
\(\Rightarrow M\ge1\)
\(M_{min}=1\) khi \(\left\{{}\begin{matrix}x-y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow x=y=\pm1\)
\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)
\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)
\(\Rightarrow x^2+y^2\le8\)
\(C_{max}=8\) khi \(x=y=\pm2\)
\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)
\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)
\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)
\(\left(x^2+9\right)+\left(y^2+9\right)+3\left(x^2+y^2\right)\ge6x+6y+6xy=90\)
\(\Rightarrow4\left(x^2+y^2\right)+18\ge90\)
\(\Rightarrow x^2+y^2\ge18\)
\(P_{min}=18\) khi \(x=y=3\)
\(x+y+xy=15\Rightarrow\left\{{}\begin{matrix}x\le15\\y\le15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\left(x-15\right)\le0\\y\left(y-15\right)\le0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2\le15x+15y\) (1)
Cũng từ đó ta có: \(\left(x-15\right)\left(y-15\right)\ge0\Rightarrow xy\ge15x+15y-225\)
\(\Rightarrow16x+16y-225\le x+y+xy=15\)
\(\Rightarrow x+y\le15\) (2)
(1);(2) \(\Rightarrow x^2+y^2\le15.15=225\)
\(P_{max}=225\) khi \(\left(x;y\right)=\left(0;15\right);\left(15;0\right)\)
Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)
Với mọi số thực x ta có:
\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)
\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)
\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)
A = y^2 - 4y + 9 = y^2 - 4y + 4 + 5
= ( y - 2 )^2 + 5 >= 5
Dấu ''='' xảy ra khi y = 2
Vậy GTNN A là 5 khi y = 2
B = x^2 - x + 1 = x^2 - x + 1/4 + 3/4 = ( x - 1/2 )^2 + 3/4 >= 3/4
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN B là 3/4 khi x = 1/2
C = 2x^2 - 6x = 2 ( x^2 - 3x + 9 / 4 - 9/4 )
= 2 ( x - 3/2 )^2 - 9/2 >= -9/2
Dấu ''='' xảy ra khi x = 3/2
Vậy GTNN C là -9/2 khi x = 3/2
Lời giải:
PT hoành độ giao điểm:
$x^2-(m-3)x-m+4=0(*)$
Để (d) và (P) cắt nhau tại hai điểm phân biệt $A(x_1,y_1)$ và $B(x_2,y_2)$ thì PT $(*)$ có 2 nghiệm $x_1,x_2$ phân biệt
Điều này xảy ra khi $\Delta=(m-3)^2+4(m-4)>0$
$\Leftrightarrow m^2-2m-7>0\Leftrightarrow m> 2\sqrt{2}+1$ hoặc $m< 1-2\sqrt{2}$
Áp dụng định lý Viet: $x_1+x_2=m-3$ và $x_1x_2=-m+4$
Để tam giác $OAB$ vuông tại $O$ thì:
$OA^2+OB^2=AB^2$
$\Leftrightarrow x_1^2+y_1^2+x_2^2+y_2^2=(x_1-x_2)^2+(y_1-y_2)^2$
$\Leftrightarrow x_1x_2+y_1y_2=0$
$\Leftrightarrow x_1x_2+(x_1x_2)^2=0$
$\Leftrightarrow x_1x_2(x_1x_2+1)=0$
$\Leftrightarrow x_1x_2=0$ hoặc $x_1x_2=-1$
$\Leftrightarrow -m+4=0$ hoặc $-m+4=-1$
$\Leftrightarrow m=4$ hoặc $m=5$ (đều thỏa mãn)