K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)

\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)

Từ (1) và (2) => đpcm

b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)

\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)

Từ (3) và (4) => đpcm

c, làm giống câu a

8 tháng 10 2017

a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)

            \(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)

(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

8 tháng 5 2017

Từ\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}\)

\(\Rightarrow\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{a}{e}\) (1)

Ta lại có : \(\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\) (TC DTSBN) (2)

Từ (1) ; (2) \(\Rightarrow\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}=\frac{a}{e}\) (đpcm)

15 tháng 11 2015

mk làm câu a thôi, b dài nhưng tương tự

Gọi a/b=c/d=k =>a=bk ; c=dk

=>\(\frac{\left(2a+3b\right)^2}{\left(3a-4b\right)^2}=\frac{\left(2bk+3b\right)^2}{\left(3bk-4b\right)^2}=\frac{\left[b\left(2k+3\right)\right]^2}{\left[b\left(3k-4\right)\right]^2}=\frac{b^2\left(2k+3\right)^2}{b^2\left(3k-4\right)^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(1)

=>\(\frac{\left(2c+3d\right)^2}{\left(3c-4d\right)^2}=\frac{\left(2dk+3d\right)^2}{\left(3dk-4d\right)^2}=\frac{\left[d\left(2k+3\right)\right]^2}{\left[d\left(3k-4\right)\right]^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(2)

Từ (1);(2)=> đpcm

16 tháng 3 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)

Đặt \(k=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)

\(\Rightarrow k^4=\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{abcd}{bcde}=\frac{a}{e}\)

\(\Rightarrow\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{a}{e}\)(đpcm)