6X84Y chia hết cho 22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 7n chia hết cho 3
mà 7 không chia hết cho 3
nên \(n⋮3\)
=>\(n=3k;k\in Z\)
b: \(-22⋮n\)
=>\(n\inƯ\left(-22\right)\)
=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
c: \(-16⋮n-1\)
=>\(n-1\inƯ\left(-16\right)\)
=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)
d: \(n+19⋮18\)
=>\(n+1+18⋮18\)
=>\(n+1⋮18\)
=>\(n+1=18k\left(k\in Z\right)\)
=>\(n=18k-1\left(k\in Z\right)\)
b) A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220)
A=3.2+3.23+...+3.219
A=3.(2+23+25+...+219)
⇒A⋮3
phần c) làm tương tự
a) A chia hết cho 2 vì tất cả các số hạng của tổng đều chia hết cho 2.
b) Ta tách ghép các số hạng của A thành các nhóm sao cho mỗi nhóm xuất hiện thừa số chia hết cho 3. Khi đó:
a) 2n + 1 chia hết cho 6 - n
Ta có : 6 - n = -(n - 6)
=> 2n + 1 chia hết cho n - 6
=> 2(n - 6) + 13 chia hết cho n - 6
=> 13 chia hết cho n - 6
=> n - 6 thuộc {1 ; 13}
=> 6 - n thuộc {-1 ; -13}
=> n thuộc {7 ; 19}
n + 22 chia hết cho n + 1
=> (n + 1) + 21 chia hết cho n + 1
=> 21 chia hết cho n + 1
=> n + 1 thuộc {1 ; 3 ; 7 ; 21}
=> n thuộc {0 ; 2 ; 6 ; 20}
a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)
Lời giải:
$M=4+4+2^3+...+2^{60}$
$=8+(2^3+2^4)+(2^5+2^6)+...+(2^{59}+2^{60})$
$=8+2^3(1+2)+2^5(1+2)+...+2^{59}(1+2)$
$=8+2^3.3+2^5.3+....+2^{59}.3$
$=8+3(2^3+2^5+...+2^{59})$
Vì $3(2^3+2^5+...+2^{59})\vdots 3$ mà $8\not\vdots 3$ nên $M\not\vdots 3$
Bạn xem lại đề.