Giúp mik với
a) Cho số abc chia hết cho 37. Chứng minh rằng số cab cx chia hết cho 37
c) Chứng minh rằng: Hai số lẻ liên tiếp bao giờ cx là số nguyên tố
b) Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
gọi 2 số nguyên tố sinh đôi là n và n+2.vây sô tn nằm giữa 2 số đó la n+1
n là số nguyên tố lớn hơn 3 nên n lẻ.=> n chẵn=>n+1 chia hết cho 2
mặt khác n n+1 n+2 là 3 số tự nguyên liên tiếp .do n và n+2 không chia hết cho 3 nên n+1 phải chia hết cho 3
n+1 chia hết cho cả 2 và 3 nên n+1 chia hêt cho 6.vậy.....
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
2 số nguyên tố sinh đôi lớn hơn 3
Hai số đó chẵn (1)
=> Số giữa chẵn => Chia hết cho 2
Nếu số cuối chia 3 dư 1 (2) => Số nằm giữa chia hết cho 3
Từ (1) và (2) => Số ở giữa chia hết cho 2.3 = 6
Nếu số cuối chia 3 dư 2
=> Số thứ giữa chia 3 dư 1
=> Số thứ nhất chia hết cho 3 (lớn hơn 3)
Mà số thứ nhất là số nguyên tố => Loại
=> ĐPCM
- Ta c/m rằng các số nguyên tố lớn hơn 3 luôn có dạng 6k+1, 6k+5, 6k-1.
- Số nguyên tố chia cho 6 sẽ có 1 trong các số dư là 0,1,2,3,4,5.
+ Vì số nguyên tố lẻ nên không chia hết cho 2=>không thể có dạng 6k, 6k+2, 6k+4. Mà số nguyên tố lớn 3 nên cũng không chia hết cho 3
=>Số nguyên tố cũng không thể có dạng 6k+3.
- Vậy số nguyên tố có dạng 6k+1, 6k+5.
- Ta thấy: 6k+5-6=6k-1
mà 6k+5-6=6(k-1)+5 luôn là số nguyên tố nên 6k-1 cũng là số nguyên tố.
=> Số nguyên tố sinh đôi luôn có 2 dạng là 6k+1 và 6k-1.
=> Số chính giữa 2 số nguyên tố sinh đôi có dạng 6k luôn chia hết cho 6.
\(\Rightarrow\overline{abc}⋮37\Rightarrow10.\overline{abc}=1000a+100b+10c=999a+100b+10c+a⋮37\) mà \(999a⋮37\Rightarrow100b+10c+a=\overline{bca}⋮37\)
\(\overline{bca}⋮37\Rightarrow10.\overline{bca}=1000b+100c+10a=999b+100c+10a+b⋮37\) mà
\(999b⋮37\Rightarrow100c+10a+b=\overline{cab}⋮37\left(dpcm\right)\)