K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

1/ ĐKXĐ: $4x^2-4x-11\geq 0$

PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$

$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)

$\Leftrightarrow 2a^2-a-6=0$

$\Leftrightarrow (a-2)(2a+3)=0$

Vì $a\geq 0$ nên $a=2$

$\Leftrightarrow \sqrt{4x^2-4x-11}=2$

$\Leftrightarrow 4x^2-4x-11=4$

$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$

$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

2/ ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$

$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)

$\Leftrightarrow a^2-3a-14=0$

$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)

$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

18 tháng 12 2020

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

18 tháng 12 2020

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

NV
21 tháng 7 2021

c.

\(\Leftrightarrow x^2+3-\left(3x+1\right)\sqrt{x^2+3}+2x^2+2x=0\)

Đặt \(\sqrt{x^2+3}=t>0\)

\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)

\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=x^2+2x+1\left(x\ge-1\right)\\x^2+3=4x^2\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

NV
21 tháng 7 2021

a.

Đề bài ko chính xác, pt này ko giải được

b.

ĐKXĐ: \(x\ge-\dfrac{7}{2}\)

\(2x+7-\left(2x+7\right)\sqrt{2x+7}+x^2+7x=0\)

Đặt \(\sqrt{2x+7}=t\ge0\)

\(\Rightarrow t^2-\left(2x+7\right)t+x^2+7x=0\)

\(\Delta=\left(2x+7\right)^2-4\left(x^2+7x\right)=49\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+7-7}{2}=x\\t=\dfrac{2x+7+7}{2}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}=x\left(x\ge0\right)\\\sqrt{2x+7}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-7=0\left(x\ge0\right)\\x^2+12x+42=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=1+2\sqrt{2}\)

22 tháng 10 2021

a)√x−2+12√4x−8=√9x−18−2

=>√x−2+12√4(x−2)=√9(x−2)−2

=>√x−2+12√22(x−2)=√32(x−2)−2

=>√x−2+12.2√(x−2)=3√(x−2)−2

=>√x−2+24√(x−2)=3√(x−2)−2

=>√x−2+24√(x−2)-3√(x−2)=-2

=>√x−2(1+24-3)=-2

=>22√x−2=-2

=>√x−2=-2/22

=>√x−2=-1/11

=>x−2=1/121

=>x=1/121+2=243/121

b)√(3x−1)2=5

=>|3x−1|=5

=>3x−1=5 hoặc 3x−1=-5

=>3x=6 hoặc 3x=-4

=>x=2 hoặc x=-4/3

 

10 tháng 11 2021

\(ĐK:x\le2\\ PT\Leftrightarrow3x^2-9x+1=4-4x+x^2\\ \Leftrightarrow2x^2-5x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=-\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=-\dfrac{1}{2}\)

6 tháng 7 2023

ĐKXĐ: \(\left\{{}\begin{matrix}3x^2-9x+1\ge0\\x\ge2\end{matrix}\right.\)

Khi đó:

\(\sqrt{3x^2-9x+1}=x-2\\ \Leftrightarrow3x^2-9x+1=\left(x-2\right)^2\\ \Leftrightarrow3x^2-9x+1=x^2-4x+4\\ \Leftrightarrow3x^2-9x+1-x^2+4x-4=0\\ \Leftrightarrow2x^2-5x-3=0\\ \Leftrightarrow2x^2+x-6x-3=0\\ \Leftrightarrow x\left(2x+1\right)-3\left(2x+1\right)=0\\ \Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Thử lại với x = 3 thì \(3x^2-9x+1=3.3^2-9.3+1=1>0\)

 

Vậy PT có nghiệm duy nhất \(S=\left\{3\right\}\)

6 tháng 7 2023

\(\sqrt{3x^2-9x+1}=x-2\) (ĐK: \(x>2\) )

\(\Leftrightarrow3x^2-9x+1=\left(x-2\right)^2\)

\(\Leftrightarrow3x^2-9x+1=x^2-4x+4\)

\(\Leftrightarrow3x^2-9x+1-x^2+4x-4=0\)

\(\Leftrightarrow2x^2-5x-3=0\)

\(\Rightarrow\Delta=\left(-5\right)^2-4\cdot2\cdot\left(-3\right)=49>0\)

Vậy pt có 2 nghiệm:

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(-5\right)+\sqrt{49}}{2\cdot2}=3\\x_2=\dfrac{-\left(-5\right)-\sqrt{49}}{2\cdot2}=-\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\)

Vậy: \(S=\left\{3\right\}\)

GH
6 tháng 7 2023

loading...

NV
6 tháng 10 2021

ĐKXĐ: \(x\ge-\dfrac{10}{3}\)

\(\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\\sqrt{3x+10}-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-3\)