K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Đáp án D

17 tháng 5 2022

 Tham khảo:

Số phần tử của không gian mẫu là img1. Để người đó gọi đúng số điện thoại mà không phải thử quá hai lần ta có 2 trường hợp:

TH1: Người đó gọi đúng ở lần thứ nhất.

TH2: Người đó gọi đúng ở lần thứ hai. Gọi A1 người đó gọi đúng ở lần thứ nhất

img5 Xác suất người đó gọi đúng là P(A1) = \(\dfrac{1}{10}\) 

      Xác suất người đó gọi không đúng là P(A1) = \(\dfrac{9}{10}\).

Gọi A2 là người đó gọi đúng ở lần thứ hai

img10 Xác suất người đó gọi đúng là P(A2) = \(\dfrac{1}{9}\) .

Gọi A là người đó gọi đúng số điện thoại mà không phải thử quá hai lần, ta có img14img15(đpcm)

17 tháng 5 2022

3 lần chứ có phải 2 lần đâu ; copy thì cx phải đọc kĩ chứ 

10 tháng 10 2021

dễ mà:?????

7 tháng 2 2019

Đáp án C

Xét các số có 9 chữ số khác nhau: 

- Có 9 cách chọn chữ số ở vị trí đầu tiên.

- Có cách chọn 8 chữ số tiếp theo 

Do đó số các số có 9 chữ số khác nhau là:

Xét các số thỏa mãn đề bài:

- Có cách chọn 4 chữ số lẻ.

- Đầu tiên ta xếp vị trí cho chữ số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7 cách xếp.

- Tiếp theo ta có cách chọn và xếp hai chữ số lẻ đứng hai bên chữ số 0. 

- Cuối cùng ta có 6! cách xếp 6 chữ số còn lại vào 6 vị trí còn lại. 

Gọi A là biến cố đã cho, khi đó

Vậy xác suất cần tìm là 

14 tháng 8 2018

n(A)=1

\(n\left(\Omega\right)=C^1_{10}\cdot C^1_9=90\)

=>Xác suất đúng là 1/90

10 tháng 8 2018

Chọn D 

Gọi 2 số cuối là ab,là số điện thoại nên có đủ các chữ số từ 0 đến 9

Ta có a có 10 cách chọn, b khác a nên có 9 cách chọn. Vậy không gian mẫu có 9.10= 90 phần tử.

Vậy xá xuất gọi một lần dúng là 1/90

NV
2 tháng 11 2021

Không gian mẫu: \(n\left(\Omega\right)=10!\)

Chọn 5 chữ số từ 6 chữ số còn lại (khác 0,3,6,8): có \(C_6^5\) cách

Hoán vị 6 chữ số (5 chữ số được chọn nói trên và số 8): \(6!\) cách

Tổng cộng: \(6!.C_6^5\) số

Xác suất: \(P=\dfrac{6!.C_6^5}{10!}=...\)

22 tháng 9 2018

Đáp án C.