cho tam giác abc có BA=BC kẻ AH vuông góc với BC , CK vuông góc vứi AB . CM tam giác ABH= tam giác BCK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC
AH⊥BC ⇒ gócAHB=gócAHC
Xét △ABH và △ACH có:
gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)
⇒ △ABH=△ACH (ch-gn)
b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)
Xét △DAH và △EAH có
gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)
AH là cạnh chung
⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)
⇒ △ADE cân tại A
c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)
△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)
⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị
⇒ DE//BC
hình tự vẽ nhá!
a, Vì ^B = ^C
=> t/g ABC cân tại A
=> AB = AC
Vì tam giác ABC cân tại A nên đường cao AH cũng là đường trung tuyến
=> HB = HC
XÉt t//g ABH và t/g ACH có :
AB = AC ( cmt )
^B = ^C ( gt )
HB = HC ( cmt )
=> t/ ABH = t/g ACH ( g.c.g)
b, Vì HA = HB (Cmt)
AH vuông góc BC
=> AH là trung trực BC
c, Vì tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\) (1)
Xét t/g HMB và t/g HNC có:
HB = HC (cmt)
^B = ^C
^BHM = ^CHN ( = 90 độ )
=> t/g HMB = t/g HNC ( ch-gn )
=>HM = HN
Xét t/g AMH và t/g ANH có :
^AMH = ^ANH (=90 độ)
AH chung
HM = HN ( cmt)
=> t/g AMH = t/g ANH (ch-cgv)
=>AM = AN
=> t/g AMN cân tại A
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^o-\widehat{MAN}}{2}\) (2)
Từ (1) và (2) => ^AMN = ^ABC
MÀ 2 góc này ở vị trí đồng vị
=> MN // BC (ĐPCM)
1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
2: Ta có: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=64\)
=>\(HA=\sqrt{64}=8\left(cm\right)\)
3: Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AH
4: Xét ΔAHM có
AE là đường trung tuyến
AE là đường cao
Do đó: ΔAHM cân tại A
=>AM=AH
Ta có: ΔAHN cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAN
=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)
Ta có: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM
=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)
Ta có: AM=AH
AH=AN
Do đó: AM=AN
Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)
=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)
Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ
=>góc MAN=180 độ
=>\(2\cdot\widehat{BAC}=180^0\)
=>\(\widehat{BAC}=90^0\)
a) Áp dụng Pytago dễ dàng tính được AC=4
b) Xét hai tam giác vuông ABD và HBD có
BD cạnh chung
góc ABD = góc HBD (BD là phân giác góc B)
Nên hai tam giác trên bằng nhau (cạnh huyền - góc nhọn)
Suy ra AB = BH
AD = DH
Suy ra BD là trung trực của AH (định lý 2)
c) Ý bạn là E là giao điểm của AH và BD?
Hay E là giao điểm của DH và AB?
Cho tam giác ABC có góc B và góc C nhọn, AB < AC, đường cao AH. Vẽ đường thẳng BD = BA, BD vuông góc với BA sao cho C và D khác phía đối với AB. Vẽ đoạn thẳng CE = CA , CE vuông góc với CA sao cho B và E khác phía đối với AC. Kẻ DI vuông góc với BC tại I và EK vuông góc với BC tại K. Chứng minh : 1) góc ABH phụ với góc DBI 2) góc ABH = góc BDI và góc BAH = góc DBI 3) tam giác ABH = tam giác DBI 4) tam giác ACH = tam giác CEK 5) BI = CK
trình bày bài này lâu lém
tự vận dụng kiến thức mà làm
suy nghĩ đi
động não đi
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE và AD=AE
d: Xét ΔABC có
AD/AB=AE/AC
nên DE//BC
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=6cm
=>AH=8cm
c: Xét ΔAHE có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHE cân tại A
hay AE=AH
d: Xét ΔADH có
AI là đường cao
AI là đườngtrung tuyến
Do đó:ΔADH cân tại A
=>AD=AH=AE
=>ΔADE cân tại A
Bạn tự vẽ hình nhé.
Xét \(\Delta ABH\)và \(\Delta CBK\)có:
\(AB=CB\)(giả thiết)
\(\widehat{B}\)chung
\(\widehat{AHB}=\widehat{CBK}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta CBK\)(cạnh huyền - góc nhọn)
Xét tam giác ABH và tam giác BCK ta có :
^AKC = ^AHB ( = 90^0 )
AB = AC (gt)
^B _ chung
=)) tam giác ABH = tam giác BCK (ch - gn)