K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2020

Sai đề ( hoặc mình sai) vì qua b kẻ dường thẳng bk vuông góc với ab thì không nổi.

Đề sai 

Chúc bạn học tốt

1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

6 tháng 6 2021

kẻ BK là gì???

Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả

19 tháng 3 2020

mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng 

21 tháng 12 2023

A B C M N I K

a/ Ta có

\(AB\perp AC\left(gt\right)\Rightarrow AM\perp AC;IN\perp AC\left(gt\right)\) => AM//IN

\(AC\perp AB\left(gt\right)\Rightarrow AN\perp AB;IM\perp AB\left(gt\right)\) => AN//IM

=> AMIN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Mà \(\widehat{A}=90^o\)

=> AMIN là HCN

b/

Ta co

AM//IN (cmt) =>AB//IK 

BK//AI (gt)

=> ABKI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => BK=AI (cạnh đối hbh)

c/

Xét tg vuông ABC có

\(AI^2=BI.CI\) (Trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow3AI^2=3.BI.CI\) (1)

Xét tg vuông MBI có 

\(BM^2=BI^2-MI^2\) (2) (Pitago)

Xét tg vuông NCI có

\(CN^2=CI^2-NI^2\) (3) (Pitago)

Cộng 2 vế của (1) (2) (3) ta có

\(3AI^2+BM^2+CN^2=BI^2+CI^2+3.BI.CI-\left(MI^2+NI^2\right)=\)

\(=\left(BI+CI\right)^2+BI.CI-\left(MI^2+NI^2\right)=\)

\(=BC^2+BI.CI-\left(MI^2+NI^2\right)\) (4)

Ta có

\(BI.CI=AI^2\left(cmt\right)\) (5)

Xét tg vuông AIN có

\(AI^2=AN^2+NI^2\)

Do AMIN là HCN (cnt) => AN=MI

\(\Rightarrow AI^2=MI^2+NI^2\) (6)

Thay (5) và (6) vào (4) ta có

\(3AI^2+BM^2+CN^2=BC^2+AI^2-AI^2\)

\(\Rightarrow BC^2=3AI^2+BM^2+CN^2\left(dpcm\right)\)

 

 

 

 

 

a) Xét ΔBAK vuông tại A và ΔBCK vuông tại C có

BK chung

BA=BC(ΔBAC cân tại B)Do đó: ΔBAK=ΔBCK(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{ABK}=\widehat{CBK}\)(hai góc tương ứng)

mà tia BK nằm giữa hai tia BA,BC

nên BK là tia phân giác của \(\widehat{ABC}\)(đpcm)

b) Ta có: ΔBAK=ΔBCK(cmt)

nên KA=KC(Hai cạnh tương ứng)

Ta có: BA=BC(ΔABC cân tại B)

nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có:KA=KC(cmt)

nên K nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng) (2)

Từ (1) và (2) suy ra BK là đường trung trực của AC

hay BK\(\perp\)AC(đpcm)

Vì BK là đường trung trực của AC(cmt)

nên BK vuông góc với AC tại trung điểm của AC

mà BK cắt AC tại I(gt)

nên BK\(\perp\)AC tại I và I là trung điểm của AC

Ta có: I là trung điểm của AC(cmt)

nên \(CI=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBIC vuông tại I, ta được:

\(BC^2=BI^2+IC^2\)

\(\Leftrightarrow BI^2=BC^2-IC^2=10^2-3^2=91\)

hay \(BI=\sqrt{91}cm\)

Vậy: \(BI=\sqrt{91}cm\)