Thực hiện phép tính:
\(\frac{x^3-y^3}{2y}.\left[\frac{2y}{4-2y-2x+xy}+\frac{2xy+4y}{\left(x-y\right)\left(x^2-4\right)}\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
a/ (\(x^3y^2\)-\(\frac{1}{2}x^3y\) + \(2xy\) - \(2x^2y^3\) + \(xy^2\) - \(4y^2\) =
3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1
\)
<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)
hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường
a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)
\(=-2x^4y^3+4x^3y^4-10x^2y^5\)
b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)
\(=-2x^4+6x^3+2x^2-2x\)
c) Ta có: \(3x^2\left(2x^3-x+5\right)\)
\(=6x^5-3x^3+15x^2\)
d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)
\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)
e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)
\(=-4x^3y^2+8x^2y^2-12x^2y\)
f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)
\(=4x^3y^2+3x^2y^2-5x^3y\)
\(\frac{x^3-y^3}{2y}.\left[\frac{2y}{4-2y-2x+xy}+\frac{2xy+4y}{\left(x-y\right)\left(x^2-4\right)}\right]\)
\(=\frac{x^3-y^3}{2y}.\left[\frac{2y}{\left(x-2\right)\left(y-2\right)}+\frac{2y\left(x+2\right)}{\left(x-y\right)\left(x-2\right)\left(x+2\right)}\right]\)
\(=\left(x^3-y^3\right).\left[\frac{x-y}{\left(x-y\right)\left(x-2\right)\left(y-2\right)}+\frac{y-2}{\left(x-y\right)\left(x-2\right)\left(y-2\right)}\right]\)
\(=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x-2\right)}{\left(x-y\right)\left(x-2\right)\left(y-2\right)}\)
\(=\frac{x^2+xy+y^2}{y-2}\)