K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2020

Bài làm 

Từ \(\frac{x}{y}=\frac{7}{4}\Rightarrow\frac{x}{7}=\frac{y}{4}\)

Đặt \(\frac{x}{7}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=7k\\y=4k\end{cases}}\)

Khi đó x2 + y2 = 260

tương đương ( 7k )2 + ( 4k )2 = 260

=> 49k2 + 16k2 = 260

=> 65k2 = 260

=> k2 = 4

=> k = ±2

Với k = 2 => x = 14 ; y = 8

Với k = -2 => x = -14 ; y = -8

Vậy ( x ; y ) = { ( 14 ; 8 ) , ( -14 ; -8 ) }

27 tháng 11 2020

Ta có : \(\frac{x}{y}=\frac{7}{4}\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)

Đặt \(x=7k;y=4k\)

Suy ra : \(x^2+y^2=\left(7k\right)^2+\left(4k\right)^2=49k^2+16k^2=260\)

\(\Leftrightarrow65k^2=260\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)

TH1 : Nếu k = 2 thì : 

\(x=7.2=14;y=4.2=8\)

TH2 : Nếu k = -2 thì : 

\(x=7.\left(-2\right)=-14;y=4.\left(-2\right)=-8\)

8 tháng 8 2018

a, Theo tính chất của tỉ lệ thuận ta có:

x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217

⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212

Vậy..............................

b, Theo t/c của tỉ lệ thuận ta có:

x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13

Áp dụng t/c của dãy tỉ số = nhau ta có:

x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27

⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67

Vậy.............

21 tháng 6 2019

Bạn Đinh Thị Khánh Linh làm đúng rồi mik làm theo cách bài ấy nhé

Vì y < x => y^2 < x^2.

=> M = x^2 + y^2 < 2x^2

Ta có: x + y ≤ 7 => y ≤ 7 - x Mà x<y

=> y ≤ 7 - x < x

=> 0 < y < x < 3,5 ( vì (x+y) ≤7)

Để M đạt gtri lớn nhất, x^2 phải lớn nhất

Vì x ≤ 3,5 => x=3,5 thì x^2 đạt giá trị lớn nhất

Từ đó: y-x=7-3.5 = 3.5

=> M= 3,5^2 + 3,5^2=24,5

Vậy giá trị lớn nhất của M = 24,5

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)

b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)

nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)

4 tháng 10 2021

c) \(\dfrac{x}{-3}=\dfrac{y}{8}\)   

\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}=-\dfrac{44}{\dfrac{5}{-9+64}}=-\dfrac{44}{\dfrac{5}{55}}=-484\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

a. Áp dụng TCDTSBN:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)

$\Rightarrow x=-3.2=-6; y=-3.5=-15$

b. Áp dụng TCDTSBN:

$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$

$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$

$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$

$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$

c.

$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$

$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$

$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$

$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$

Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$

30 tháng 9 2021

Em cảm ơn ạ

12 tháng 5 2021

Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :

\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)

\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)

Vậy min Q = 4 khi x = y = 1

27 tháng 10 2016

a)x=\(\frac{1}{5}\)

y=\(\frac{2}{5}\)

b)x=28

y=16

8 tháng 12 2017

Suy ra  x 1 − 4 = y 1 3 = y 1 − x 1 3 − ( − 4 ) = − 7 7 = − 1

Nên  x 1 = ( − 1 ) . ( − 4 ) = 4 ; y 1 = ( − 1 ) .3 = − 3

Đáp án cần chọn là D