Tính Diện Tích Hình Vuông MNBQ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔFAB và ΔFCD có
\(\widehat{FAB}=\widehat{FCD}\)
\(\widehat{AFB}=\widehat{CFD}\)
Do đó: ΔFAB\(\sim\)ΔFCD
b: Ta có: ΔFAB\(\sim\)ΔFCD
nên FA/FC=FB/FD
hay \(FA\cdot FD=FB\cdot FC\)
a, Xét \(\Delta ACM\)và \(\Delta BCD\)có :
MC = DC ( gt )
\(\widehat{ACM}\)= \(\widehat{DCB}\)( cx cộng vs \(\widehat{MCB}\)
BC=Ac ( gt )
=> \(\Delta ACM=\Delta BCD\left(c-g-c\right)\)
b, \(BM.BM=3cm^2\)
\(\Rightarrow BM=\sqrt{3}\)
AD t/c Pi ta- go đảo, ta có :
\(MD^2=BM^2+BD^2\)
22 = \(\left(\sqrt{3}\right)^2+1^2\)
4 = 3 + 1 \(\Rightarrow\Delta MBD\)vuông
c, Xét \(\Delta BMD\)vuông tại B, ta có :
BD = \(\frac{1}{2}MD\)
\(\Rightarrow\widehat{BMD}\)= 30o , \(\widehat{CMD}\)= 60o ( vì \(\Delta CMD\)đều )
Ta có : \(\widehat{BMD}\)+ \(\widehat{CMD}\) = \(\widehat{BMC}\)
30o + 60o = 90o
Vì \(\Delta MDC\)đều \(\Rightarrow\widehat{MDC}\)= 60o
Ta có : \(\widehat{MBD}\)+ \(\widehat{BDM}\)+ \(\widehat{DMB}\)= 180o ( tổng 3 góc trong 1 \(\Delta\))
90o + \(\widehat{BDM}\)+ 30o = 180o
\(\widehat{BDM}\)= 60o
Mà \(\widehat{MDC}\)+ \(\widehat{BDM}\)= 60o + 60o = 120o
lại có : \(\Delta CAM=\Delta CBD\)(câu a ) => \(\widehat{AMC}\)= 120o
Ta có : \(\widehat{AMB}\)+ \(\widehat{BMC}\)+ \(\widehat{AMC}\)= 360o
\(\widehat{AMB}\)+ 90o + 120o = 360o
\(\widehat{AMB}\)= 1500
Mà \(\widehat{AMB}\)+ \(\widehat{BMD}=150^o+30^o=180^o\)
\(\Rightarrow\widehat{AMD}\)là góc bẹt
=> A, M,D thẳng hàng
d, Xét \(\Delta BMC\)vuông
BC2 = BM2 + MC2
= \(\left(\sqrt{3}\right)^2+4\)
= 7
=> \(BC=\sqrt{7}\)
Shv có cạnh BC là \(\sqrt{7}.\sqrt{7}=7\)
Xét \(\Delta ABC\)có \(\hept{\begin{cases}BC^2=5^2=25\\AB^2+AC^2=3^2+4^2=9+16=25\end{cases}}\Rightarrow BC^2=AB^2+AC^2\Rightarrow\Delta ABC\)vuông tại A (định lý Pytago đảo)
\(\Delta ABC\)vuông tại A có trung tuyến AM (M là trung điểm BC) \(\Rightarrow AM=\frac{BC}{2}=\frac{5}{2}=2,5\left(cm\right)\)