K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

a) Ta có: N, P lần lượt là trung điểm của CA; CB 

=> NP là đường trung bình của tam giác CAB với đáy AB

=> NP // = 1212AB (1)

mà M là trung điểm AB  => AM = MB = 1212AB  (2)

Từ (1); (2) => NP // = MB 

=> BMNP là hình bình hành.

b. Từ (1) ; (2) => AMPN là hình bình hành

mà hbh AMPN có 1 góc vg nên                                                                => AMPN là hình chữ nhật

15 tháng 11 2019

a) Ta có: N, P lần lượt là trung điểm của CA; CB 

=> NP là đường trung bình của tam giác CAB với đáy AB

=> NP // = \(\frac{1}{2}\)AB (1)

mà M là trung điểm AB  => AM = MB = \(\frac{1}{2}\)AB  (2)

Từ (1); (2) => NP // = MB 

=> BMNP là hình bình hành.

b. Từ (1) ; (2) => AMPN là hình bình hành

mà ^NAM = ^CAB = 1v

=> AMMPN là hình chữ nhật

( chú ý 1v là 1 vuông = góc 90 độ )

30 tháng 12 2021

a) Ta có: N, P lần lượt là trung điểm của CA; CB 

=> NP là đường trung bình của tam giác CAB với đáy AB

=> NP // = 1212AB (1)

mà M là trung điểm AB  => AM = MB = 1212AB  (2)

Từ (1); (2) => NP // = MB 

=> BMNP là hình bình hành.

b. Từ (1) ; (2) => AMPN là hình bình hành

mà hbh AMPN có 1 góc vg nên                                                                => AMPN là hình chữ nhật

    
30 tháng 12 2021

a) Ta có: N, P lần lượt là trung điểm của CA; CB 

=> NP là đường trung bình của tam giác CAB với đáy AB

=> NP // = 1212AB (1)

mà M là trung điểm AB  => AM = MB = 1212AB  (2)

Từ (1); (2) => NP // = MB 

=> BMNP là hình bình hành.

b. Từ (1) ; (2) => AMPN là hình bình hành

mà hbh AMPN có 1 góc vg nên                                                                                                  => AMPN là hình chữ nhật

  
27 tháng 10 2021

Xét ΔBCA có 

N là trung điểm của AC

P là trung điểm của BC

Do đó: NP là đường trung bình của ΔBCA

Suy ra: NP//MB và NP=MB

hay BMNP là hình bình hành

27 tháng 10 2021

Vẽ hình kiểu j z ạ 😅

17 tháng 12 2021

MÌNH ĐANG CẦN GẤP

17 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

22 tháng 9 2020

1.

AB=CD (cặp cạnh đối hbh)

AM=AB/2 và CN=CD/2

=> AM=CN (1)

AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)

Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)

2.

a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC 

=> MN//BC => MN//BP và MN=BP=BC/2

=> BMNP là hbh (lý do như bài 1)

b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN

\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)

Từ kq câu a => MN=BC/2=4/2=2 cm

C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm

Chu vi BMNP là

(2+1,5)x2=7 cm

21 tháng 11 2021

Answer:

Bài 7:

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)

\(\Leftrightarrow\widehat{A}=90^o\)

Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)

\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)

\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)

A B x D C

21 tháng 11 2021

Answer:

Bài 8:

a/ P là trung điểm BC (giả thiết)

N là trung điểm AC (giả thiết)

=> NP là đường trung bình

=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)

Mà M là trung điểm của AB (giả thiết)

=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)

Từ (1) và (2) => NP // MB và NP = MB

=> Tứ giác BMNP là hình bình hành

b/ Ta có: AM = NP và NP // MB hay NP // AM

=> AMPN là hình bình hành

Mà ta có \(\widehat{BAC}=90^o\)

=> AMPN là hình chữ nhật

=> AM = PN, AN = MP

c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ

Tương tự ta có: PR vuông góc AB, RM = MP

Ta xét hai tam giác RAM và AQN:

AM = QN (=NP)

\(\widehat{AMR}=\widehat{QNA}=90^o\)

RM = AN (=NP)

=> Tam giác RAM = tam giác AQN (c.g.c)

\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)

Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)

Ta có: \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)

=> R, A, Q thẳng hàng

C Q N M B R A P