Tam giác ABC vuông tại A . MNP lần lượt là trung điểm của AB,AC,BC
a, chứng minh BMNP là hình bình hành
b, tứ giác AMPN là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = \(\frac{1}{2}\)AB (1)
mà M là trung điểm AB => AM = MB = \(\frac{1}{2}\)AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà ^NAM = ^CAB = 1v
=> AMMPN là hình chữ nhật
( chú ý 1v là 1 vuông = góc 90 độ )
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật
Xét ΔBCA có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBCA
Suy ra: NP//MB và NP=MB
hay BMNP là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay BMNC là hình thang
1.
AB=CD (cặp cạnh đối hbh)
AM=AB/2 và CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
2.
a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC
=> MN//BC => MN//BP và MN=BP=BC/2
=> BMNP là hbh (lý do như bài 1)
b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN
\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)
Từ kq câu a => MN=BC/2=4/2=2 cm
C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm
Chu vi BMNP là
(2+1,5)x2=7 cm
Answer:
Bài 7:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)
\(\Leftrightarrow\widehat{A}=90^o\)
Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)
\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)
\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)
Answer:
Bài 8:
a/ P là trung điểm BC (giả thiết)
N là trung điểm AC (giả thiết)
=> NP là đường trung bình
=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)
Mà M là trung điểm của AB (giả thiết)
=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)
Từ (1) và (2) => NP // MB và NP = MB
=> Tứ giác BMNP là hình bình hành
b/ Ta có: AM = NP và NP // MB hay NP // AM
=> AMPN là hình bình hành
Mà ta có \(\widehat{BAC}=90^o\)
=> AMPN là hình chữ nhật
=> AM = PN, AN = MP
c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ
Tương tự ta có: PR vuông góc AB, RM = MP
Ta xét hai tam giác RAM và AQN:
AM = QN (=NP)
\(\widehat{AMR}=\widehat{QNA}=90^o\)
RM = AN (=NP)
=> Tam giác RAM = tam giác AQN (c.g.c)
\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)
Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)
\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)
Ta có: \(\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)
=> R, A, Q thẳng hàng
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật