Cho a>b>0 và 2a2 +2b2=5ab
Tính \(P=\frac{a+b}{a-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^2+2b^2=5ab\\ \Leftrightarrow2a^2-5ab+2b^2=0\\ \Leftrightarrow2a^2-4ab-ab+2b^2=0\\ \Leftrightarrow2a\left(a-2b\right)+b\left(a-2b\right)=0\\ \Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-\dfrac{b}{2}\\a=2b\end{matrix}\right.\)
Với \(a=-\dfrac{b}{2}\Leftrightarrow Q=\dfrac{-\dfrac{b}{2}+b}{-\dfrac{b}{2}-b}=\dfrac{b}{2}:\dfrac{-3b}{2}=\dfrac{b}{-3b}=-\dfrac{1}{3}\)
Với \(a=2b\Leftrightarrow Q=\dfrac{3b}{b}=3\)
\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)
Xét hiệu \(2a^2+2b^2-\left(a^3+ab^2\right)=\left(2a^2-a^3\right)+\left(2b^2-ab^2\right)\)
\(=a^2\left(2-a\right)+b^2\left(2-a\right)\)
\(=\left(a^2+b^2\right)\left(2-a\right)\)
Do \(a^2+b^2\ge0;\forall a;b\) nên:
\(2a^2+2b^2>a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\2-a>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2\ne0\\a< 2\end{matrix}\right.\)
\(2a^2+2b^2=a^3+ab^2\) khi \(\left[{}\begin{matrix}a^2+b^2=0\\2-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\a=2\end{matrix}\right.\)
\(2a^2+2b^2< a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\a>2\end{matrix}\right.\) \(\Rightarrow a>2\)
\(2a^2+2b^2\ge a^3+ab^2\) khi \(2-a\ge0\Leftrightarrow a\le2\)
Ta có A 1 ^ + A 2 ^ = B 1 ^ + B 2 ^ = 180 ° ⇒ 2 A 1 ^ + 2 A 2 ^ = 2 B 1 ^ + 2 B 2 ^ (1)
Mặt khác: A 1 ^ − 2 A 2 ^ = B 1 ^ − 2 B 2 ^ (2)
Cộng từng vế các đẳng thức (1) và (2) được 3 A 1 ^ = 3 B 1 ^ ⇒ A 1 ^ = B 1 ^
=> a // b vì có cặp góc so le trong bằng nhau
Bài 3:
a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
=-36
b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)
\(=y^4-y^4+1\)
=1
Bài 2:
a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)
\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)
\(=2a^2-b^2\)
b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=6b^2-7ab\)
c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)
\(=3b^2-7xb+2x^2\)
Ta có : 2a2 + 2b2 = 5ab
=> 2a2 + 2b2 - 4ab = 5ab - 4ab
=> 2(a2 + b2 - 2ab) = ab
=> (a - b)2 = ab/2
Lại có 2a2 + 2b2 = 5ab
=> 2a2 + 2b2 + 4ab = 5ab + 4ab
=> 2(a + b)2 = 9ab
=> (a + b)2 = 9ab/2
Ta có P2 = \(\left(\frac{a+b}{a-b}\right)^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{\frac{9ab}{2}}{\frac{ab}{2}}=9\)
=> P = \(\pm\)3
Vậy P = \(\pm\)3