K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

ĐK: \(x>-1\)

\(PT\Leftrightarrow a^2-\left(x+1\right)a+2x-2=0\)

\(\Leftrightarrow\left(2-a\right)\left(x-a-1\right)=0\)

.Làm nốt. 

~Ko chắc~

30 tháng 8 2019

À quên: Đặt \(a=\sqrt{x^2-2x+3}\ge\sqrt{2}\)

8 tháng 7 2016

2/ (x+ x + 1) (x2+ x + 2) = 12

đặt x2 + x = t

thay vào đc: 

(t + 1) (t + 2) = 12

<=> t2 + 3t + 2 = 12

<=> t2 + 3t - 10 = 0

<=> t2 - 2t + 5t - 10 = 0

<=> t (t - 2) + 5 (t - 2) = 0

<=> (t + 5) (t - 2) = 0

=> \(\hept{\begin{cases}t=-5\\t=2\end{cases}}\)

thay t đc:

*) x2 + x = -5  => x loại

*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2) 

=> x = 1 hoặc x = - 2

S = {-2 ; 1}

3/ (x- 6x + 4)- 15(x- 6x + 10) = 1

đặt x- 6x + 4 = t

có: t- 15(t + 6) = 1

<=> t2 - 15t - 91 = 0

....

....

số xấu, xem lại đề ~0~

7 tháng 7 2016

câu 2, a=x2 +x+1 . PHƯƠNG TRÌNH TRỞ THÀNH a x (a +1)=12. giải binh thương 

câu 3, tương tự a= x2 - 6x + 4 .PHƯƠNG TRÌNH TRỞ THÀNH a2 - 15x(a+6)=1. giải bình thương 

Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)

Theo đề, ta có phương trình:

a+1/a=2

\(\Leftrightarrow a+\dfrac{1}{a}=2\)

\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)

=>a=1

=>\(x=\sqrt{4x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

13 tháng 7 2019

Cách liên hợp 

ĐK \(x\ge-2\)

PT <=> \(\sqrt{x+2}+5x+2\ne0\)

\(25x^2+19x+2+2\left(x+1\right)\left(\sqrt{x+2}-5x-2\right)=0\)

Xét \(\sqrt{x+2}+5x+2=0\)=> \(x=\frac{-19-\sqrt{161}}{50}\)

Thay vào ta thấy nó không phải là nghiệm của PT

=> \(\sqrt{x+2}+5x+2\ne0\)

<=> \(25x^2+19x+2+2\left(x+1\right).\frac{x+2-\left(5x+2\right)^2}{\sqrt{x+2}+5x+2}=0\)

<=> \(25x^2+19x+2+2\left(x+1\right).\frac{-25x^2-19x-2}{\sqrt{x+2}+5x+2}=0\)

<=> \(\orbr{\begin{cases}25x^2+19x+2=0\\1-\frac{2\left(x+1\right)}{\sqrt{x+2}+5x+2}=0\left(2\right)\end{cases}}\)

Pt (2)

<=> \(\sqrt{x+2}=-3x\)

<=> \(\hept{\begin{cases}x\le0\\9x^2-x-2=0\end{cases}}\)=> \(x=\frac{1-\sqrt{73}}{18}\)(TM ĐKXĐ)

Pt (1) có nghiệm \(x=\frac{-19+\sqrt{161}}{50}\)(Tm ĐKXĐ)

Vậy Pt có nghiệm \(S=\left\{\frac{1-\sqrt{73}}{18};\frac{-19+\sqrt{161}}{50}\right\}\)

13 tháng 7 2019

Cách đặt ẩn phụ không hoàn toàn 

ĐK\(x\ge-2\)

PT 

<=> \(15x^2+6x+2\left(x+1\right)\sqrt{x+2}-\left(x+2\right)=0\)

Đặt \(\sqrt{x+2}=a\left(a\ge0\right)\)

=> \(15x^2+6x+2\left(x+1\right).a-a^2=0\)

<=> \(\left(15x^2+2ax-a^2\right)+\left(6x+2a\right)=0\)

<=> \(\left(5x-a\right)\left(3x+a\right)+2\left(3x+a\right)=0\)

<=> \(\left(3x+a\right)\left(5x-a+2\right)=0\)

<=> \(\orbr{\begin{cases}3x+a=0\\5x-a+2=0\end{cases}}\)

+ 3x+a=0

=> \(3x+\sqrt{2+x}=0\)

=> \(\hept{\begin{cases}x\le0\\9x^2-x-2=0\end{cases}}\)=> \(x=\frac{1-\sqrt{73}}{18}\)(TM ĐKXĐ)

+ 5x-a+2=0

=> \(5x+2=\sqrt{x+2}\)

=> \(\hept{\begin{cases}x\ge-\frac{2}{5}\\25x^2+19x+2=0\end{cases}}\)=> \(x=\frac{-19+\sqrt{161}}{50}\)(TM ĐKXĐ)

vậy \(S=\left\{\frac{-19+\sqrt{161}}{50};\frac{1-\sqrt{73}}{18}\right\}\)

20 tháng 11 2015

vào câu hỏi tương tự nhé bạn

23 tháng 8 2023

Đặt: \(\sqrt{2x-1}=a;\sqrt{x-2}=b\Rightarrow\sqrt{x+1}=\sqrt{\left(2x-1\right)-\left(x-2\right)}=\sqrt{a^2-b^2}\)

\(pt\Leftrightarrow a+b=\sqrt{a^2-b^2}\)

\(\Leftrightarrow a^2+2ab+b^2=a^2-b^2\)

\(\Leftrightarrow2b^2+2ab=0\Leftrightarrow2b\left(a+b\right)=0\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2023

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề bài được rõ ràng hơn.

ĐK  \(x\ge0\)

Đặt \(x=a,x+1=b\)

\(PT\Leftrightarrow a^4+b^4=\left(a+b\right)^4\)

<=> 4a3b+6a2b2+4ab3=0

<=> ab(2a2+3ab+2b2)=0

=>ab=0 (vì 2a2+3ab+2b2>0)

=>\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy.............................