K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Góc N= 90 - 32 = 58o

PN= 8*tan32o = ?(bấm máy tính)

AN=( dùng định lí Py-ta-go)

5 tháng 10 2023

b) Ta có:

\(\widehat{B}=180^o-90^o-42^o=48^o\) 

Xét tam giác ABC vuông tại A ta có:

\(cosB=\dfrac{AB}{BM}\Rightarrow cos48^o=\dfrac{6}{BM}\)

\(\Rightarrow BM=\dfrac{6}{cos48^o}\approx9\left(cm\right)\) 

Mà: \(sinB=\dfrac{AM}{BM}\Rightarrow sin48^o=\dfrac{AM}{9}\)

\(\Rightarrow AM=9\cdot sin48^o\approx6,7\left(cm\right)\) 

a: \(\widehat{B}=90^0-30^0=60^0\)

XétΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

nên AB=5cm

=>\(AC=5\sqrt{3}\left(cm\right)\)

b: \(\widehat{C}=90^0-30^0=60^0\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

hay \(BC=16\sqrt{3}\left(cm\right)\)

=>\(AC=8\sqrt{3}\left(cm\right)\)

17 tháng 10 2021

a: \(\widehat{B}=60^0\)

AB=8cm

\(AC=4\sqrt{3}\left(cm\right)\)

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=55^0\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(BC=15:sin55\simeq18.31\left(cm\right)\)

\(AB=\sqrt{BC^2-AC^2}\simeq10,5\left(cm\right)\)

b: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-50^0=40^0\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(BC=8:sin50\simeq10,44\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq6,71\left(cm\right)\)

Ta có: ΔABC vuông tại B 

nên \(\widehat{A}+\widehat{C}=90^0\)

hay \(\widehat{C}=23^0\)

Xét ΔABC vuông tại B có 

\(AC=\dfrac{AB}{\cos67^0}\)

\(\Leftrightarrow AC\simeq20,47\left(cm\right)\)

\(\Leftrightarrow BC\simeq18,84\left(cm\right)\)

17 tháng 12 2023

Gọi độ dài cạnh góc vuông thứ nhất là x(cm)

=>Độ dài cạnh góc vuông thứ hai là x+4(cm)

Độ dài cạnh huyền là 8cm nên ta có: \(x^2+\left(x+4\right)^2=8^2\)

=>\(x^2+x^2+8x+16-64=0\)

=>\(2x^2+8x-48=0\)

=>\(x^2+4x-24=0\)

=>\(x^2+4x+4-28=0\)

=>\(\left(x+2\right)^2=28\)

=>\(\left[{}\begin{matrix}x+2=2\sqrt{7}\\x+2=-2\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{7}-2\left(nhận\right)\\x=-2\sqrt{7}-2\left(loại\right)\end{matrix}\right.\)

Độ dài cạnh góc vuông thứ hai là:

\(2\sqrt{7}-2+4=2\sqrt{7}+2\left(cm\right)\)

Diện tích tam giác vuông ABC là:

\(\dfrac{1}{2}\left(2\sqrt{7}-2\right)\left(2\sqrt{7}+2\right)\)

\(=\dfrac{1}{2}\left(28-4\right)\)

\(=\dfrac{1}{2}\cdot24=12\left(cm^2\right)\)