Tìm nghiệm nguyên dương của pt
2(y+z)=x(yz-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
Áp dụng bất đẳng thứ Cauchy (AM-GM):
\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)
Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)
Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\) (1)
Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\) (2)
Và: \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\) (3)
Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)
Do x nguyên dương
TH1:x=1 Giả sử y=<z
PT<=>2(y+z)=yz-1<=>...<=>(y-2)(z-2)=5
Giải pt nghiệm nguyên dương được nghiệm (1;3;7)
TH2:x>=2
2(y+z)>=2(yz-1)
<=>yz-y-z =<1
<=>(y-1)(z-1) =<2 (1)
Do y,z nguyên dương nên y-1 và z-1 lớn hơn hoặc =0
=>(y-1)(z-1)>=0
Kết hợp với (1) có (y-1)(z-1)=0
hoặc (y-1)(z-1)=1
hoặc (y-1)(z-1)=2
Giải các pt nghiệm nguyên trên ta
KL: pt có các nghiệm (3;5;1),(6;2;1),(4;3;1),(3;1;5),(6;1;2),
(4;1;3),(2;2;3),(2;3;2),(1;3;7),(1;7;3...
\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(
loại )
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)
=>x,y,z vô nghiệm hoặc đề sai