cho ca so a,b,c duong thoa man ab+bc+ca =1 chung minh \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $ab+bc+ac=1$ nên:
$a^2+1=a^2+ab+bc+ac=(a+b)(b+c)$
$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$
$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$
Do đó, áp dụng BĐT AM-GM:
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{a+c}{c+a}\right)=\frac{3}{2}\)
Ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Lời giải:
Vì $ab+bc+ac=1$ nên:
$a^2+1=a^2+ab+bc+ac=(a+b)(b+c)$
$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$
$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$
Do đó, áp dụng BĐT AM-GM:
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{a+c}{c+a}\right)=\frac{3}{2}\)
Ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)
Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)
Áp dụng bất đẳng thức bu nhi a ta có \(\left(x^2+y^2+z^2\right)3\ge\left(x+y+z\right)^2\)
Áp dụng ta có
\(Q^2\le3\left(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}\right)\)
đặt \(M=\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}=\frac{a}{1+a+ab}+\frac{ab}{a+ab+abc}+\frac{abc}{ab+abc+â^2bc}\)
\(=\frac{1}{a+ab+1}+\frac{a}{a+ab+1}+\frac{ab}{1+ab+1}=1\)
=> \(Q^2\le3\Rightarrow Q\le\sqrt{3}\)
mặt khác Áp dụng cô si ta có
\(a+b+c\ge3\sqrt[3]{abc}=3\Rightarrow\sqrt{a+b+c}\ge\sqrt{3}\Rightarrow\sqrt{a+b+c}\ge Q\) (ĐPCM)
ta có:
\(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}=\frac{a}{abc+a+ab}+\frac{b}{1+b+bc}+\frac{bc}{b+bc+abc}\)
\(=\frac{1}{1+b+bc}+\frac{b}{1+b+bc}+\frac{bc}{1+b+bc}=1\)
ta có:
\(Q^2\le3\left(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}\right)=3\)
\(\Rightarrow Q\le\sqrt{3}=\sqrt{3\sqrt[3]{abc}}\le\sqrt{a+b+c}\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c=1
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1^2}{\sqrt{a}}+\frac{2^2}{\sqrt{b}}+\frac{3^2}{\sqrt{c}}\ge\frac{\left(1+2+3\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\frac{1}{\sqrt{a}}=\frac{2}{\sqrt{b}}=\frac{3}{\sqrt{c}}\\\sqrt{a}+\sqrt{b}+\sqrt{c}=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=1\\\sqrt{b}=2\\\sqrt{c}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=9\end{matrix}\right.\)