K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

\(Q=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minQ=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

15 tháng 8 2016

a)P=x2-2x+5

         Ta có:x2-2x+5=x2-2x+1+4

                               =(x-1)2+4

     Vì (x-1)2\(\ge\)0

                    Suy ra:(x-1)2+4\(\ge\)4

Dấu = xảy ra khi x-1=0

                            x=1

           Vậy MinP=4 khi x=1

b)M=2x2-6x

            Ta có:2x2-6x=2.(x2-3x)

                                 =2.(x2-2.1,5x+2,25)-4,5

                                 =2.(x-1,5)2-4,5

           Vì 2.(x-1,5)2\(\ge\)0

Suy ra:2.(x-1,5)2-4,5\(\ge\)-4,5

                   Dấu = xảy ra khi x-1,5=0

                                               x=1,5

      Vậy Min M=-4,5 khi x=1,5

15 tháng 8 2016

a)

\(x^2-2x+5\)

\(=\left(x^2-2.x.1+1^2\right)+4\)

\(=\left(x-1\right)^2+4\)

Ta có

\(\left(x-1\right)^2+4\ge4\) ( với mọi x)

Dấu " = " xảy ra khi x=1

Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x=1

b)

\(2x^2-6x\)

\(=\left[\left(\sqrt{2}.x\right)^2-2.\sqrt{2}.x.\frac{3\sqrt{2}}{2}+\frac{9}{2}\right]-\frac{9}{2}\)

\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)

Ta có

\(\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) với mọi x

Dấu " = " xảy ra khi \(x=\frac{3}{2}\)

Vậy biểu thức đạt giá trị nhỏ nhất là \(-\frac{9}{2}\Leftrightarrow x=\frac{3}{2}\)

 

16 tháng 2 2018

a) P = x2 - 2x + 5

        = x2 - 2x + 1 - 1 + 5 

        = ( x - 1 )2 + 4

Ta có :  \(\left(x-1\right)^2\ge\)\(0\)\(\forall\)\(x\)

\(\Rightarrow\left(x-1\right)^2+4\)\(\ge\)\(0\)\(\forall\)\(x\)

Dấu " = " xảy ra <=> ( x - 1 )2 = 0

                          <=> x - 1 = 0

                           <=> x   =  1 

Vậy GTNN của P là 4 khi x = 1 .

b) M = 2x2 - 6x 

        = 2 ( x2 - 3x )

        = \(2\left[\left(x^2-2x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\right]\)

        =  \(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Ta có : \(2\left(x-\frac{3}{2}\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)

       \(\Rightarrow\)\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)\(\forall\)\(x\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\left(x-\frac{3}{2}\right)^2=0\)

                          \(\Leftrightarrow\) \(\left(x-\frac{3}{2}\right)=0\)

                          \(\Leftrightarrow\)\(x=\frac{3}{2}\)

Vậy GTNN của M là \(-\frac{9}{2}\)khi \(x=\frac{3}{2}\).

        

10 tháng 9 2017

Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4

Vì \(\left(x-1\right)^2\ge0\forall x\)

Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)

Nên : Pmin = 4 khi x = 1

b) Ta có Q = 2x2 - 6x = 2(x- 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\) 

SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)

9 tháng 9 2020

\(Q=2x^2-6x\)

\(=2.\left(x^2-3x\right)\)

\(=2.\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2.\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\)

\(=2.\left(x-\frac{3}{2}\right)^2-2.\frac{9}{4}\)

\(=2.\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu = xảy ra khi:

\(2.\left(x-\frac{3}{2}\right)^2=0\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2=0\)

\(\Rightarrow x-\frac{3}{2}=0\)

\(\Rightarrow x=\frac{3}{2}\)

Vậy:..............

1 tháng 9 2016

a.

\(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

\(\left(x-1\right)^2\ge0\)

\(\left(x-1\right)^2+4\ge4\)

Vậy Min P = 4 khi x = 1

b.

\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left[x^2-2\times x\times\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right]=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

\(2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\ge-\frac{9}{2}\)

Vậy Min Q = \(-\frac{9}{2}\) khi x = \(\frac{3}{2}\)

1 tháng 9 2016

 a)P=x2-2x+5

      Ta có:P=x2-2x+5

                P=x2-2x+1+4

                P=(x-1)2+4

          Vì (x-1)2\(\ge\)0

                   Suy ra:(x-1)2+4\(\ge\)4

Dấu = xảy ra khi x-1=0

                            x=1

              Vậy Min P=4 khi x=1

 

9 tháng 7 2021

\(4x^2+4x+2022=4x^2+4x+1+2021=\left(2x+1\right)^2+2021\ge2021\)

dấu "=" xảy ra \(< =>2x+1=0< =>x=\dfrac{-1}{2}\)

Đặt \(-6x^2+3x+3=0\)

\(\Leftrightarrow-6x^2+6x-3x+3=0\)

\(\Leftrightarrow-6x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)