K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Lời giải:

$y=\frac{x^2+3}{x^2-x+2}$
$\Leftrightarrow y(x^2-x+2)=x^2+3$

$\Leftrightarrow x^2(y-1)-xy+(2y-3)=0(*)$

Coi đây là pt bậc 2 ẩn $x$. Vì $y$ tồn tại nên $(*)$ luôn có nghiệm

$\Rightarrow \Delta=y^2-4(y-1)(2y-3)\geq 0$

$\Leftrightarrow -7y^2+20y-12\geq 0$

$\Leftrightarrow (7y-6)(2-y)\geq 0$

$\Leftrightarrow \frac{6}{7}\leq y\leq 2$

Vậy $y_{\min}=\frac{6}{7}; y_{\max}=2$

8 tháng 12 2021

a)Vì |x-1/2|≥0

|x-1/2|-3≥0-3

A=|x-1/2|-3≥-3

=>A≥-3

Dấu ''='' xảy ra khi

x-1/2=0

x=0+1/2

x=1/2

Vậy GTNN của biểu thức đã cho là -3 khi  x=1/2

b)

Vì |x-4|≥0

-|x-4|≤0

=>2/3-|x-4|≤2/3-0

2/3-|x-4|≤2/3

=>B=2/3-|x-4|≤2/3

B≤2/3

Dấu ''='' xảy ra khi

x-4=0

x=0+4

x=4

Vậy GTLN của biểu thức là 2/3 khi x=4

 

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:
Vì $|y+5|\geq 0$ với mọi $y$

$\Rightarrow -2|y+5|\leq 0$ với mọi $y$

$\Rightarrow B=-2|y+5|-3\leq -3$

Vậy $B_{\max}=-3$ khi $y+5=0\Leftrightarrow y=-5$

--------------------

Vì $|x+3|\geq 0$ với mọi $x$

$\Rightarrow C=|x+3|-2\geq -2$

Vậy $C_{\min}=-2$ khi $x+3=0\Leftrightarrow x=-3$

-----------------

$|2x-1|\geq 0$ với mọi $x$

$\Rightarrow D=3|2x-1|+\frac{3}{2}\geq 3.0+\frac{3}{2}=\frac{3}{2}$

Vậy $D_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$

17 tháng 10 2021

b=-5

c=-3

d=3/2 và 1/2

NV
31 tháng 8 2021

\(P=\dfrac{2\left(x^2+2\right)+x^2-4x+4}{x^2+2}=2+\dfrac{\left(x-2\right)^2}{x^2+2}\ge2\)

\(P=\dfrac{5\left(x^2+2\right)-2x^2-4x-2}{x^2+2}=5-\dfrac{2\left(x+1\right)^2}{x^2+2}\le5\)