:Tìm giá trị lớn nhất và giá trị nhỏ nhất của y=\(\dfrac{x^2+3}{x^2-x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì |x-1/2|≥0
|x-1/2|-3≥0-3
A=|x-1/2|-3≥-3
=>A≥-3
Dấu ''='' xảy ra khi
x-1/2=0
x=0+1/2
x=1/2
Vậy GTNN của biểu thức đã cho là -3 khi x=1/2
b)
Vì |x-4|≥0
-|x-4|≤0
=>2/3-|x-4|≤2/3-0
2/3-|x-4|≤2/3
=>B=2/3-|x-4|≤2/3
B≤2/3
Dấu ''='' xảy ra khi
x-4=0
x=0+4
x=4
Vậy GTLN của biểu thức là 2/3 khi x=4
Lời giải:
Vì $|y+5|\geq 0$ với mọi $y$
$\Rightarrow -2|y+5|\leq 0$ với mọi $y$
$\Rightarrow B=-2|y+5|-3\leq -3$
Vậy $B_{\max}=-3$ khi $y+5=0\Leftrightarrow y=-5$
--------------------
Vì $|x+3|\geq 0$ với mọi $x$
$\Rightarrow C=|x+3|-2\geq -2$
Vậy $C_{\min}=-2$ khi $x+3=0\Leftrightarrow x=-3$
-----------------
$|2x-1|\geq 0$ với mọi $x$
$\Rightarrow D=3|2x-1|+\frac{3}{2}\geq 3.0+\frac{3}{2}=\frac{3}{2}$
Vậy $D_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$
\(P=\dfrac{2\left(x^2+2\right)+x^2-4x+4}{x^2+2}=2+\dfrac{\left(x-2\right)^2}{x^2+2}\ge2\)
\(P=\dfrac{5\left(x^2+2\right)-2x^2-4x-2}{x^2+2}=5-\dfrac{2\left(x+1\right)^2}{x^2+2}\le5\)
Lời giải:
$y=\frac{x^2+3}{x^2-x+2}$
$\Leftrightarrow y(x^2-x+2)=x^2+3$
$\Leftrightarrow x^2(y-1)-xy+(2y-3)=0(*)$
Coi đây là pt bậc 2 ẩn $x$. Vì $y$ tồn tại nên $(*)$ luôn có nghiệm
$\Rightarrow \Delta=y^2-4(y-1)(2y-3)\geq 0$
$\Leftrightarrow -7y^2+20y-12\geq 0$
$\Leftrightarrow (7y-6)(2-y)\geq 0$
$\Leftrightarrow \frac{6}{7}\leq y\leq 2$
Vậy $y_{\min}=\frac{6}{7}; y_{\max}=2$