K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2014

1/C/m: BEDF là hbh

2/C/m: Dùng tính chất đường trung bình chứng minh M là t/d AN và N là t/d MC.

3/C/m: ME là đường trung bình tam giác ANB và NF là đường trung bình tam giác MDC 

4/C/m: EMFN là hbh ( t/g có 2 cạnh đối vừa song vừa bằng nhau)

25 tháng 8 2015

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

tích mình với

ai tích mình

mình tích lại

thanks

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔAEM có 

E là trung điểm của AB

EN//AM

Do đó; N là trung điểm của BM

=>BN=NM(1)

Xét ΔDNC có 

F là trung điểm của DC

FM//NC

Do đó: M là trung điểm của DN

=>DM=MN(2)

Từ (1) và (2) suy ra DM=MN=NB

c: Xét ΔADM và ΔCBN có

AD=CB

\(\widehat{ADM}=\widehat{CBN}\)

DM=BN

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

mà EN=AM/2

và MF=CN/2

nên EN=MF

Xét tứ giác MENF có

NE//MF

NE=MF

Do đó: MENF là hình bình hành

a) Xét tứ giác AMND có 

AM//DN

AM=DN

Do đó: AMND là hình bình hành

Suy ra: AD=NM

b) Xét tứ giác BCNM có 

BM//CN

BM=CN

Do đó: BCNM là hình bình hành

 

b: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: FA//CE

5 tháng 7 2023

ABCD là hình bình hành\(\Rightarrow\left\{{}\begin{matrix}AB=CD\\AB//CD\end{matrix}\right.\)

\(AB//CD\Rightarrow BE//DF\)

E, F lần lượt là trung điểm của các cạnh AB,CD\(\Rightarrow\left\{{}\begin{matrix}BE=\dfrac{1}{2}AB\\DF=\dfrac{1}{2}DC\end{matrix}\right.\Rightarrow BE=DF\) (do AB = CD)

Xét tứ giác BEDF có BE // DF, BE = DF

\(\Rightarrow BEDF\) là hình bình hành \(\Rightarrow BF=DE\)

 

7 tháng 7 2023

A B C D E F

a/

Ta có

AB = CD (cạnh đối hình bình hành)

AE = BE (gt); CF=DF (gt)

=> AE = BE = CF = DF

Xét tứ giác AEFD có

AB//CD (cạnh đối hình bình hành)

=> AE//DF mà AE = DF (cmt) => AEFD là hbh (tứ giác có cặp cạnh đối // và bằng nhau là hình bình hành)

Xét tứ giác AECF có

AB//CD (cạnh đối hbh)

=> AE//CF mà AE = CF => AECF là hình bình hành (lý do như trên)

b/

Do AEFD là hbh => EF=AD (cạnh đối hbh)

C/m tương tự như câu a ta cũng có BEDF là hbh => BF=DE (cạnh đối hbh)

C/m tương tự có AECF là hbh => AF=EC (cạnh đối hbh)