K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét \(\left(O\right)\) có 

OA là một phần đường kính

CD là dây

OA\(\perp\)CD tại H

Do đó: H là trung điểm của CD

Xét tứ giác OCAD có

H là trung điểm của đường chéo CD

H là trung điểm của đường chéo OA

Do đó: OCAD là hình bình hành

mà OC=OD

nên OCAD là hình thoi

2: Ta có: OCAD là hình thoi

nên OC=OD=AC=AD

mà OA=OC

nên OC=OD=AC=AD=OA

Xét ΔOAC có OA=OC=AC

nên ΔOAC đều

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

a) Vì $OC=OD$ nên tam giác 4COD$ là tam giác cân tại $O$. Do đó đường cao $OI$ đồng thời là đường trung trực của $CD$ hay $AO$ là trung trực $CD$.

Vậy tứ giác $ACOD$ có 2 đường chéo $AO, CD$ thỏa mãn $AO$ là trung trực của $CD$ và $CD$ là trung trực của $AI$ nên $ACOD$ là hình thoi. 

b) $B\in AO$ và $AO$ là trung trực $CD$ nên $BC=BD(1)$

Áp dụng định lý Pitago:

$CD=2CI=2\sqrt{CO^2-IO^2}=2\sqrt{R^2-(\frac{R}{2})^2}=\sqrt{3}R$

$CB=\sqrr{CI^2+IB^2}=\sqrt{(\frac{\sqrt{3}}{2})^2+(\frac{3}{2})^2}=\sqrt{3}R$

$\Rightarrow CD=CB(2)$

Từ $(1);(2)\Rightarrow CD=CB=BD$ nên tam giác $BCD$ đều (đpcm)

c) 

Chu vi: $P=3CD=3\sqrt{3}R$ (đơn vị độ dài)

Diện tích: $S=\frac{BI.CD}{2}=\frac{\frac{3}{2}R.\sqrt{3}R}{2}=\frac{3\sqrt{3}R^2}{4}$ (đơn vị diện tích)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Hình vẽ:

undefined

16 tháng 8 2021

O A B C D H M

a, xét tam giác CHA và tg CHO có : CH chung

AH = HO do H là trđ của AO (gt)

^CHA = ^CHO = 90

=> tg CHA = tg CHO (2cgv)

=> CH = CO

có AB _|_ CD => A là điểm chính giữa của cung CD => AC = AD mà OC  = OD 

=> AC = CO = OD = DA

=> ACOD là hình thoi

b, C thuộc đường tròn đường kính AB => ^ACB = 90 => AC _|_ CB

có AC // DO do ACOD là hình thoi 

=> DO _|_ CB  

M là trung điểm của dây BC (Gt) => OM _|_ BC (định lí)

=> D;O;M thẳng hàng

c, xét tg ACB có ^ACB = 90 và CH _|_ AB

=> AH.HB = CH^2

=> 4AH.HB = 4CH^2

=> 4AH.HB = (2CH)^2

mà 2CH = CD

=> CD^2 = 4AH.HB

16 tháng 12 2023

a:

Sửa đề: OCBD là hình thoi

Xét ΔCOB có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCOB cân tại C

Xét ΔCOB cân tại C có OB=OC

nên ΔCOB đều

Ta có; ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

Xét tứ giác OCBD có

H là trung điểm chung của OB và CD

=>OCBD là hình bình hành

Hình bình hành OCBD có OC=OD

nên OCBD là hình thoi

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔACB vuông tại C có CH là đường cao

nên \(AC^2=AH\cdot AB\)

=>\(AC^2=AH\cdot2R\)

Xét ΔCAB vuông tại C có CH là đường cao

nên \(AH\cdot HB=CH^2=CH\cdot HD\)

c: Ta có: ΔOCB đều

=>\(\widehat{OBC}=60^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔACB vuông tại C có \(sinABC=\dfrac{AC}{AB}\)

=>\(\dfrac{AC}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AC=R\sqrt{3}\)

Xét ΔACB vuông tại C có \(cosABC=\dfrac{CB}{AB}\)

=>\(\dfrac{CB}{2R}=cos60=\dfrac{1}{2}\)

=>CB=R

Xét ΔCHB vuông tại H có \(sinCBH=\dfrac{CH}{CB}\)

=>\(\dfrac{CH}{R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(CH=\dfrac{R\sqrt{3}}{2}\)

d: Xét (O) có

IC,ID là các tiếp tuyến

Do đó: IC=ID

=>I nằm trên đường trung trực của CD(1)

Ta có: OCBD là hình thoi

=>OB là đường trung trực của DC(2)

Từ (1),(2) suy ra O,B,I thẳng hàng