cho biểu thức A=(1+3^0+3^2+3^4+3^6+...+3^2020)
tìm n biết 8A+1=3^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 1 + 2 + 22 + 23 + ..... + 229 + 230
=> 2A = 2.(1 + 2 + 22 + 23 + ..... + 229 + 230)
=> 2A = 2 + 22 + 23 + ..... + 229 + 231
=> 2A - A = 231 - 1
=> A = 231 - 1
=> A + 1 = 231
=> 2n + 4 = 231
=> n + 4 = 31
=> n = 31 - 4
=> n = 27
A = 1 + 3 + 32 + 33+..........+349+350
3A = 3 + 32 + 33 + 34 + ... + 350 + 351
3A - A = ( 3 + 32 + 33 + 34 + ... + 350 + 351 ) - ( 1 + 3 + 32 + 33+..........+349+350 )
2A = 351 - 1
A = ( 351 - 1 ) : 2
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
ĐKXĐ: \(a\ne\frac{3}{2},a\ne-\frac{3}{2}\)
a, \(P=\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right):\frac{1}{6-4a}\)
\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}+\frac{7a-2a^2-1}{2\left(9-4a^2\right)}\right):\frac{-1}{4a-6}\)
\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}-\frac{7a-2a^2-1}{2\left(4a^2-9\right)}\right):\frac{-1}{2\left(2a-3\right)}\)
\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}-\frac{7a-2a^2-1}{2\left(2a-3\right)\left(2a+3\right)}\right)\left[-2\left(2a-3\right)\right]\)
\(=\left[\frac{2\left(a-1\right)\left(2a+3\right)-3a\left(2a-3\right)-\left(7a-2a^2-1\right)}{2\left(2a-3\right)\left(2a+3\right)}\right]\left[-2\left(2a-3\right)\right]\)
\(=\frac{4a-5}{2\left(2a-3\right)\left(2a+3\right)}\left[-2\left(2a-3\right)\right]\)
\(=-\frac{\left(4a-5\right)}{2a+3}=\frac{5-4a}{2a+3}\)
Bg (Sửa đề vì 1 + 30 = 1 + 1 mà trong những bài toán ntn thì hai lần 1 hơi sai sai)
Ta có: A = 30 + 32 + 34 + 36 +...+ 32020
=> A = 32.0 + 32.1 + 32.2 + 32.3 +...+ 31010.2
=> A = 32.0 + 32.1 + 32.2 + 32.3 +...+ 32.1010
=> A = (32)0 + (32)1 + (32)2 + (32)3 +...+ (32)1010
=> A = 90 + 91 + 92 + 93 +...+ 91010
=> 9A = 9.(90 + 91 + 92 + 93 +...+ 91010)
=> 9A = 91 + 92 + 93 + 94 +...+ 91011
=> 9A - A = (91 + 92 + 93 + 94 +...+ 91011) - (90 + 91 + 92 + 93 +...+ 91010)
=> 8A = 91011 - 90
=> 8A + 1 = 91011 + 1 - 1
=> 8A + 1 = 91011
=> 8A + 1 = (32)1011
=> 8A + 1 = 3n = 32022
Vậy n = 2022