\(\text{Tìm số nguyên n sao cho A=2n^3-7n^2+2n +12 chia hết cho B= 2n - 1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n^2 + 2n - 4 = n^2 + 2n - 15 + 11
= (n^2 + 5n - 3n -15) + 11
= (n - 3)(n + 5) + 11 để n^2 + 2n - 4 chia hết cho 11
<=> (n - 3).(n +5) chia hết cho 11
<=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....
b)Sửa thành 2n^3 + n^2 +7n+1 mới lm đc nha!!
2n^3 + n^2 + 7n + 1 = n^2. (2n - 1) + 2n^2 + 7n + 1
= n^2. (2n -1) + n.(2n -1) + 8n + 1
= (n^2 + n)(2n -1) + 4.(2n -1) + 5
= (n^2 + n + 4)(2n -1) + 5
Để 2n^3 + n2 + 7n + 1 chia hết cho 2n - 1
<=> (n^2 + n + 4)(2n -1) + 5 chia hết cho 2n -1
<=> 5 chia hết cho 2n -1
<=> 2n - 1 ∈Ư(5) = {-5;-1;1;5}
.......
c) n3 - 2 = (n3 - 8) + 6 = (n -2)(n2 + 2n + 4) + 6
Để n3 - 2 chia hết cho n - 2 <=> 6 chia hết cho n - 2 <=> n - 2 \(\in\) Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Tương ứng n \(\in\) {-4; -1; 0; 1; 3; 4; 5; 8}
Vậy.....
d) n3 - 3n2 - 3n - 1 = (n3 - 1) - (3n2 + 3n + 3) + 3 = (n -1).(n2 + n + 1) - 3.(n2 + n + 1) + 3 = (n - 4)(n2 + n + 1) + 3
Để n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1 thì (n - 4)(n2 + n + 1) + 3 chia hết cho n2 + n + 1
<=> 3 chia hết cho n2 + n + 1 <=> n2 + n + 1 \(\in\) Ư(3) = {-3;-1;1;3}
Mà n2 + n + 1 = (n + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi n nên n2 + n + 1 = 1 hoặc = 3
n2 + n + 1 = 1 <=> n = 0 hoặc n = -1
n2 + n + 1 = 3 <=> n2 + n - 2 = 0 <=> (n -1)(n +2) = 0 <=> n = 1 hoặc n = -2
Vậy ...
e) n4 - 2n3 + 2n2 - 2n + 1 = (n4 - 2n3 + n2) + (n2 - 2n + 1) = (n2 - n)2 + (n -1)2 = n2(n -1)2 + (n -1)2 = (n-1)2.(n2 + 1)
n4 - 1 = (n2 - 1).(n2 + 1) = (n -1)(n +1)(n2 + 1)
=> \(\frac{n^4-2n^3+2n^2-2n+1}{n^4-1}=\frac{\left(n-1\right)^2\left(n^2+1\right)}{\left(n-1\right)\left(n+1\right)\left(n^2+1\right)}=\frac{n-1}{n+1}\)( Điều kiện: n- 1 ; n + 1 khác 0 => n khác 1;-1)
Để n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1 thì \(\frac{n-1}{n+1}\) nguyên <=> n - 1 chia hết cho n + 1
<=> (n + 1) - 2 chia hết cho n +1
<=> 2 chia hết cho n + 1 <=> n + 1 \(\in\) Ư(2) = {-2;-1;1;2} <=> n \(\in\){-3; -2; 0; 1}
n = 1 Loại
Vậy n = -3 hoặc -2; 0 thì...
a) n2 + 2n - 4 = n2 + 2n - 15 + 11 = (n2 + 5n - 3n -15) + 11 = (n - 3)(n + 5) + 11
để n2 + 2n - 4 chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....
b) 2n3 + n2 + 7n + 1 = n2. (2n - 1) + 2n2 + 7n + 1 = n2. (2n -1) + n.(2n -1) + 8n + 1
= (n2 + n)(2n -1) + 4.(2n -1) + 5 = (n2 + n + 4)(2n -1) + 5
Để 2n3 + n2 + 7n + 1 chia hết cho 2n - 1 <=> (n2 + n + 4)(2n -1) + 5 chia hết cho 2n -1
<=> 5 chia hết cho 2n -1 <=> 2n - 1 \(\in\)Ư(5) = {-5;-1;1;5}
2n -1 = -5 => n = -2
2n -1 = -1 => n = 0
2n -1 = 1 => n = 1
2n -1 = 5 => n = 3
Vậy....
Ta có:
\(2n^3+n^2+7n+1⋮2n-1\)
\(\Rightarrow2n^3-n^2+2n^2-n+8n-4+5⋮2n-1\)
\(\Rightarrow\left(2n-1\right)\left(n^2+n+4\right)+5⋮2n-1\)
\(\Rightarrow5⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(5\right)=1;-1;5;-5\)
Với:
\(2n-1=1\Rightarrow2n=2\Rightarrow n=1\)
\(2n-1=-1\Rightarrow2n=0\Rightarrow n=0\)
\(2n-1=5\Rightarrow2n=6\Rightarrow n=3\)
\(2n-1=-5\Rightarrow2n=-4\Rightarrow n=-2\)
Vậy \(n=1;0;3;-2\)
ta có
\(A=2n^3-7n^2+2n+12=2n^3-n^2-6n^2+3n-n+12\)
\(\Leftrightarrow A=\left(2n-1\right)\left(n^2-3n\right)-n+12\)
do vậy muốn A chia hết cho 2n-1 thì 12-n chia hết cho 2n-1
do 2n-1 là số lẻ nên điều kiện trên tương đương 24-2n chia hết cho 2n-1
mà \(24-2n=25-\left(2n-1\right)\)vậy 25 chie hêt cho 2n-1
hay 2n-1 là ước của 25 hay 2n-1 thuộc {1,5,25}
hay n thuộc {1,3,13}