Tìm GTNN của Q=x^2+2y^2-2x-6y+2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|2x-5\right|+\left(x+2y-2\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\x+2y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(A_{min}=2021\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)
\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)
\(2x^2+2y^2-2xy-6y+21\)
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12y+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+42\right)\)
\(=\left(2x-y\right)^2+3\left(y^2-4x+4\right)+30\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
Vậy GTNN là 30
Cho mk sủa lại tí :
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
\(\Rightarrow2A\ge30\Rightarrow A\ge15\Rightarrow\)GTNN là 15
A = x2 + 2y2 + 2xy - 2x - 6y + 6
A = (x2 + 2xy + y2) - 2(x + y) + 1 + (y2 - 4y + 4) + 1
A = (x + y - 1)2 + (y - 2)2 + 1 \(\ge\)1 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1-y\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MinA = 1 khi x = -1 và y = 2
\(A=\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)
\(=\sqrt{\left(x^2-6x+9\right)+2\left(y^2+2y+1\right)}+\sqrt{\left(x^2+2x+1\right)+3\left(y^2+2y+1\right)}\)
\(=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
\(\ge\sqrt{\left(x-3\right)^2+0}+\sqrt{\left(x+1\right)^2+0}\)
\(=\left|3-x\right|+\left|x+1\right|\)
\(\ge\left|3-x+x+1\right|\)
\(=4\)
Dấu bằng xảy ra khi và chỉ khi :
\(\left(y+1\right)^2=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
\(\left(x-3\right)\left(x+1\right)\ge0\Leftrightarrow x^2-2x-3\ge0\Leftrightarrow\left(x-1\right)^2\ge4\Leftrightarrow\left|x-1\right|\ge2\Leftrightarrow x\ge3;x\le-1\)
Vậy GTNN của biểu thức là 4 khi \(x\ge3\) hoặc \(x\le-1\) và \(y=-1\)
\(Q=x^2+2y^2-2x-6y+2021\)
\(=\left(x^2-2x+1\right)+2\left(y^2-3y+\dfrac{9}{4}\right)+\dfrac{4031}{2}\)
\(=\left(x-1\right)^2+2\left(y-\dfrac{3}{2}\right)^2+\dfrac{4031}{2}\ge\dfrac{4031}{2}\)
\(minQ=\dfrac{4031}{2}\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\end{matrix}\right.\)
\(Q=\left(x^2-2x+1\right)+\left(2y^2-6y+\dfrac{9}{2}\right)+\dfrac{4031}{2}\\ Q=\left(x-1\right)^2+2\left(y^2-2\cdot\dfrac{3}{2}y+\dfrac{9}{4}\right)+\dfrac{4031}{2}\\ Q=\left(x-1\right)^2+2\left(y-\dfrac{3}{2}\right)^2+\dfrac{4031}{2}\ge\dfrac{4031}{2}\\ Q_{min}=\dfrac{4031}{2}\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\end{matrix}\right.\)