Từ các số 1,2,3,4,5,6 lập được bao nhiêu số tự nhiên gồm 6 chữ số sao cho chữ số 2 có mặt 2 lần , các chữ số còn lại khác nhau .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abcdef
a có 4 cách chọn
+ với a = { 1,2,3}
b có 5 cách chọn
c có 4 cách chọn
d có 3 cách chọn
e có 2 cách chọn
f có 1 cách chọn
\(\Rightarrow\) có 360 số
+ với a = 4
b có 3 cách chọn
b={ 1,2}
c có 4 cách chọn
d có́ 3 cách chọn
e có 2 cách choṇ
f có 1 cách chọn
b =3
c có 1 cách chọn
d có 3 cách chọn
e có 2 cách chọn
f có 1 cách chọn
\(\Rightarrow\)có 54 số
vậy có 360 + 54 = 414 số
Chọn 4 chữ số còn lại : \(C^4_6\)
Số số cần tìm : \(\dfrac{C^4_6\cdot7!}{3!}\)
Lời giải:
a. Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 là:
$5.A^4_6=1800$ (số)
b.
Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 mà không có 7 là:
$5.A^4_5=600$ (số)
Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 và 7 là:
$1800-600=1200$ (số)
Chọn B
Bước 1: ta xếp các số lẻ: có các số lẻ là 1,1,3,5 vậy có 5 ! 3 ! cách xếp.
Bước 2: ta xếp 3 số chẵn 2, 4, 6 xen kẽ 5 số lẻ trên có 6 vị trí để xếp 3 số vậy có A 6 3 cách xếp.
Vậy có 5 ! 3 ! A 6 3 = 2400 số thỏa mãn yêu cầu bài toán.
Chọn C
Mỗi số tự nhiên có 3 chữ số khác nhau được tạo thành từ các chữ số 1,2,3,4,5,6 là một chỉnh hợp chập 3 của 6 và ngược lại. Vậy có A 6 3 số tự nhiên thỏa mãn yêu cầu bài toán.
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số