K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2020

4n + 9 chia hết cho n + 2

=> 4n + 8 + 1 chia hết cho n + 2

=> 4( n + 2 ) + 1 chia hết cho n + 2

Vì 4( n + 2 ) chia hết cho ( n + 2 )

=> 1 chia hết cho n + 2

=> n + 2 ∈ Ư(1) = { -1 ; 1 }

=> n ∈ { -3 ; -1 }

13 tháng 11 2020

Cảm ơn bn Arima Kousei, bn trả lời đúng òi mik k đúng cho bn rồi ó

4 tháng 1 2019

4n-5:n-3 dư 7

\(\Rightarrow n=7\)

4 tháng 1 2019

\(4n-5⋮n-3\Leftrightarrow4n-12+7⋮n-3\)

\(\Leftrightarrow4\left(n-3\right)+7⋮n-3\)

\(\Leftrightarrow7⋮n-3\)          ( vì \(n-3\inℤ\) )

\(\Leftrightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow n\in\left\{2;4;-4;10\right\}\)

Vậy n = ...................

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

ko bt trả lời làm gì tốn thời gian

13 tháng 5 2021

Xin lỗi nha, mik mới lớp 5 nên chỉ biết giải 2 bài còn lại. Bài 2 vì chữ số hàng chục gấp 3 lần chữ số hàng đơn vị mà số đó lại chia hết cho 2 => số đó là 62 (vì số 2 ở hàng đơn vị là số duy nhất có thể nhân với 3 mà ra số cí một chữ số). Bài 3 thì:

Hàng nghìn: 4 lần chọn

Hang trăm: 3 lần chọn

Hàng chục: 2 lần chọn

Hàng đơn vị: 1 lần chọn

=> Số các số hạng có the viết được là: 4 x 3 x 2 = 24

11 tháng 11 2021

Kết bạn với tôi đi thtl_nguyentranhuyenanh nha

Câu trả lời tôi ko biết bởi mới học lớp 5

9 tháng 11 2016

a. 3n+17= 3(n+2) + 11

3n+17 chia hết cho n+2 khi 11 chia hết cho n+2 suy ra n+2 là ước của 11= (1;11) xét 2 trường hợp 

các bài dưới tương tự nhé

9 tháng 11 2016

3n+17:(n+2)=3 dư 11

Nếu chia hết thì 11:(n+2), tự giải thích

n+2 là Ư của 11 gồm 1;11;-1;-11

n+2=1=>n=-1

n+2=>11=>n=9

n+2=.-1=>n=-3

n+2=-11=>n=-13

Mình giải hết nghiệm còn n là số tự nhiên nên lấy  nghiệm là 9 

5 tháng 8 2018

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Mik cảm ơn bn nhìu nha!!!!^-^!!!

22 tháng 9 2018

a, Ta có: 5n chia hết cho n => để 5n+ 4 chia hết cho n thì 4 phải chia hết cho n

                                       n  =1;4;2

b, Ta có: n+6 = n+2+4

              n+2 chia hết cho n+2 => để n+6 chia hết cho n+2=> n+2+4 chia hết cho n+2

              => 4 chia hết cho n+2=> n+2 = 1;2;4

     Mặt khác n+2 phải lớn hơn hoặc bằng 2=> n =0;2

25 tháng 1 2017

Số đó là:6572

25 tháng 1 2017

so do la 6572 

3 tháng 4 2016

(4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)

<=> 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3

=>2n-1\(\in\){1,-1,3,-3}

=>n\(\in\){0,1,2} (vì n là số tự nhiên)

3 tháng 4 2016

 n = 1;2;0