K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2020

A B C D E H M P Q F O N K

a) ta có: H đối xứng với P qua BC mà D là giao điểm của AH và BC 

suy ra                                              D là trung điểm HP.

lại có: Q đối xứng với H qua M => M là trung điểm QH

suy ra: DM là đường trung bình tam giác HPQ

=> DM // PQ hay BC // PQ.

=> DMQP là hình thang.

lại có: \(\widehat{MDP}=90^o\)(do AD\(\perp\)BC)

=> DNQP là hình thang vuông.

b) tứ giác HCQB có M là trung điểm BC (gt)

                                M là trung điểm HQ (cmt)

=> HCQB là hình bình hành.

Kéo dài CH cắt AB tại F.

Ta có H là trực tâm tam giác ABC => AH\(\perp\)AB hay AF\(\perp\)AB.

có: HCQB là hình bình hành => \(\widehat{BCQ}=\widehat{EBC}\)(slt) và \(\widehat{CBQ}=\widehat{FCB}\)(slt)

 \(\widehat{ACQ}=\widehat{ACB}+\widehat{BCQ}=\widehat{ACB}+\widehat{EBC}=90^o\)(tam giác BCE vuông tại E)

\(\widehat{ABQ}=\widehat{ABC}+\widehat{CBQ}=\widehat{ABC}+\widehat{FCB}=90^o\)(tam giác FCB vuông tại F)

c) gọi N là giao điểm của ON và AC => ON vuông góc AC tại N.

lại có tam giác AOC cân tại O (O là giao điểm các trung trực của tam giác ABC)

=> tam giác AOC cân tại O có đường cao ON đồng thời là đường trung tuyến ứng với cạnh AC

=> N là trung điểm AC

mà ON // CQ (cùng vuông góc với AC) => O là trung điểm AQ (định lí đường trung bình trong tam giác)

=> AO = OQ (1)

Có OM\(\perp\)BC mà BC // PQ => \(OM\perp PQ\)

gọi K là trung điểm PQ, ta có \(DM=\frac{1}{2}PQ=PK=KQ\)(do DM là đường trung bình tam giác HPQ)

=> 3 điểm O,M,K thẳng hàng.

Tam giác OPQ có đường cao OK đồng thời là đường trung tuyến => tam giác OPQ cân tại O => OP = OQ (2)

lại có: OA = OB = OC (O là giao điểm 3 trung trực tam giác ABC) (3)

từ (1), (2) và (3) => OA = OB = OC = OP = OQ 

=> O cách đều 5 điểm A,B,C,P,Q.

14 tháng 11 2020

Bạn ơi cho mình sửa xíu ạ, mình có viết nhầm vài chỗ :D

câu a) dòng thứ 8, DMQP chứ không phải là DNQP nhé.

câu b) dòng thứ 5, "\(AH\perp AB\)hay \(AF\perp AB\)" sửa lại thành "\(CH\perp AB\)hay \(CF\perp AB\)"

19 tháng 10 2021

a: Ta có: H và P đối xứng nhau qua BC

nên BC là đường trung trực của HP

Suy ra: D là trung điểm của HP

Xét ΔHPQ có 

D là trung điểm của HP

M là trung điểm của HQ

Do đó: DM là đường trung bình của ΔHPQ

Suy ra: DM//PQ

hay PQ//BC

Xét tứ giác DMQP có DM//PQ

nên DMQP là hình thang

mà \(\widehat{PDM}=90^0\)

nên DMQP là hình thang vuông

28 tháng 10 2021

a: Ta có: H và P đối xứng nhau qua BC

nên HP⊥BC tại D

và D là trung điểm của HP

Xét ΔHPQ có 

D là trung điểm của HP

M là trung điểm của HQ

Do đó: DM là đường trung bình của ΔHPQ

Suy ra: PQ//BC

24 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

=>AB/AC=AD/AE

=>AB*AE=AC*AD

b: Gọi giao của HK với BC là N

=>N là trung điểm của HK

Xét ΔHKM có HN/HK=HI/HM

nên NI//KM

=>KM//BC

C nằm trên trung trực của HK

=>CH=CK

Xét tứ giác BHCM có

I là trung điểm chung của BC và HM

=>BHCM làhbh

=>BM=CH=CK

=>BKMC là hình thang cân

Hiểu rõ về BTS chỉ có thể là Army phải không chị Bangtan?Chỉ cần nhìn avatar đoán ra chủ nick là con gái vì số fan girl nhiều hơn fan boy.

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...

28 tháng 11 2021

ai giúp em với ạ

 

 

13 tháng 12 2021

Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

Để BHCK là hình thoi thì BH=CH

hay ΔABC cân tại A

a: Xét tứ giác BICH có

O là trung điểm của BC

O là trung điểm của HI

Do đó: BICH là hình bình hành

b: Ta có: BICH là hình bình hành

nên BI//CH và HB//IC

=>CI vuôg góc với AC và BI vuông góc với AB

c: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó:ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AC\cdot AE\)