Tính giá trị của biểu thức: x^3+y^3-3xy tại x+y=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))
1 = \(x^3\) - y3 - 3\(xy\)
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))
1 = \(x^3\)+y3+3\(xy\)
13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))
1 = \(x^3\) - y3 - 3\(xy\)
Ta có
\(\left(x+x\right)^3=x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Rightarrow x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(\Rightarrow K=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\) Với x+y=1
\(\Rightarrow K=1^3-3xy+3xy=1\)
a, \(x^2-2x+5\)
Với x = 1 => \(1-2+5=4\)
Với x = -2 => \(4-2\left(-2\right)+5=13\)
b, \(2x^2+4y^3-3xy+2\)
Với y = 1 ; x = 1 => \(2+4-3+2=5\)
Với x = -3 ; y = 5 => \(2.9+4.125-3.\left(-3\right).5+2=18+500+45+2=565\)
Thay x = 1, y = -3 vào biểu thức ta có 1/3. 12.(-3)2, - 3.1.(-3) = 12.
Chọn A
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
A=2x-3xy+y
Thay x=-1 và y=2 vào biểu thức A ta đc:
A= 2. (-1) -3. (-1).2 + 2
A= 6
x3 + y3 - 3xy
= ( x + y )( x2 - xy + y2 ) - 3xy
= -1( x2 - xy + y2 ) - 3xy
= -x2 + xy - y2 - 3xy
= -x2 - 2xy - y2
= -( x2 + 2xy + y2 )
= -( x + y )2
= -(-1)2 = -1