- Giúp mk câu này vs m.n ơi TTwTT
- Cho P= 7+ 7^2+ 7^3+...+ 7^2016. Chứng minh P chia hết cho 20^2
Tính A = 1 + 5 + 5^2 + 5^3 + .......... + 5^49 + 5^50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=7^6+7^5-7^4\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4\cdot55⋮55\left(đpcm\right)\)
b)\(A=1+5+5^2+5^3+...+5^{50}\)
\(5A=5+5^2+5^3+5^4+...+5^{51}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
a)
Ta có :
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)
=> Chia hết cho 5
b)
Ta có :
\(A=1+5+5^2+....+5^{50}\)
\(5A=5+5^2+....+5^{51}\)
=> 5A - A = \(\left(5+5^2+....+5^{51}\right)\)\(-\left(1+5+....+5^{50}\right)\)
\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
a) 76 + 75 - 74 = 74 ( 72 + 7 - 1) = 74 . 55\(⋮\)55
b) A = 1 + 5 + 52 + ... + 550
5A = 5 + 52 + 53 + ... + 551
5A - A = ( 5 + 52 + 53 + ... + 551) - ( 1 + 5 + 52 + ... + 550)
4A = 551 - 1
A = \(\frac{5^{51}-1}{4}\)
76+75-74
=74.72+74.7-74
=74.(72+7-1)=74.55 chia hết cho 55
A=1+5+52+......+550
=>5A=5+52+53+......+551
=>5A-A=(5+52+53+.....+551)-(1+5+52+.....+550)
=>4A=551-1
=>A=(551-1)/4
b) 5A=5+5^2+5^3+...+5^50+5^51
5A-A=4A=5^51-1
Suy ra A=5^51-1/4
Bài 2:
\(x^5=x^3\)
\(\Rightarrow x^5-x^3=0\)
\(\Rightarrow x^3\left(x^2-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)
+) \(x^3=0\Rightarrow x=0\)
+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)
Vậy \(x\in\left\{0;1;-1\right\}\)
P=7+7^2+7^3+...+7^2016
=(7+7^2+7^3+7^4)+...+(7^2013+7^2014+7^2015+7^2016)
=7(1+7+7^2+7^3)+...+7^2013(1+7+7^2+7^3)
=20^2(7+...+7^2013) chia hết cho 20^2
A=1+5+5^2+5^3+...+5^49+5^50
5A=5+5^2+5^3+5^4+....+5^50+5^51
5A-A=5+5^2+5^3+5^4+...+5^50+5^51-1-5-5^2-5^3-...-5^49-5^50
4A=5^51-1
A=(5^51-1):4