a,5x2.(4x2 – 2x +5 )
b,(6x2 -5 ).(2x + 3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) -2x(3x+2)(3x-2)+5(x+2)2 - (x-1)(2x+1)(2x+1)
= -2x(9x2-4)+5(x2+4x+4) - (x-1)(4x2-1)
= -18x3+8x+5x2+20x+20-(4x3-x-4x2+1)
= -18x3+5x2+28x+20-4x3+x+4x2+1
= -22x3+9x2+29x+21
B) (7x-8)(7x+8)-10(2x+3)2+5x(3x-2)2-4x(x-5)2
= 49x2 - 64 -10(4x2+ 12x + 3) + 5x(9x2 - 12x +4) - 4x(x2 - 10x +25)
= 49x2 - 64 -40x2 - 120x - 30 + 45x3 - 60x2 - 20x - 4x3 + 40x2 -100x
= 41x3 -11x2 -240x -94
C) \(\left(x^2-3\right)\left(x^2+3\right)-5x^2\left(x+1\right)^2-\left(x^2-3x\right)\left(x^2-2x\right)+4x\left(x+2\right)^2\)
\(\left(x^4-9\right)-5x^2\left(x^2+2x+1\right)-\left(x^4-2x^3-3x^3+6x^2\right)+4x\left(x^2+4x+4\right)\)
\(x^4-9-5x^4-10x^3-5x^2-x^4+5x^3-6x^2+4x^3+16x^2+16x\)
\(-5x^4-x^3+5x^2+20x-9\)
D) \(-6x^2\left(x+5\right)^2-\left(x-3\right)^2+\left(x^2-2\right)\left(2x^2+1\right)-4x^2\left(3x-4\right)^2\)
\(-6x^2\left(x^2+10x+25\right)-\left(x^2-6x+9\right)+2x^4-3x^2-2-4x^2\left(9x^2-24x+16\right)\)
\(-6x^4-60x^3+150x^2-x^2+6x-9+2x^4-3x^2-2-36x^4+96x^3-64x^2\)
\(-40x^4+36x^3+82x^2+6x-11\)
a:=>6x^2-8x+4x-6x^2<-4
=>-4x<-4
=>x>1
b: =>6x+8x^2-8x^2-24x>5
=>-18x>5
=>x<-5/18
a)\(6x^2-8x+2x\left(2-3x\right)< -4\)
\(\Leftrightarrow6x^2-8x+4x-6x^2< -4\)
\(\Leftrightarrow-4x< -4\)
\(\Leftrightarrow-4x.\dfrac{-1}{4}>-4\cdot\dfrac{-1}{4}\)
\(\Leftrightarrow x>1\)
Vậy bất phương trình có nghiệm là \(S=\left\{xIx>1\right\}\)
b)\(2\left(3x+4x^2\right)-8x\left(x+3\right)>5\)
\(\Leftrightarrow6x+8x^2-8x^2-24x>5\)
\(\Leftrightarrow-18x>5\)
\(\Leftrightarrow-18x\cdot\dfrac{-1}{18}< 5\cdot\dfrac{-1}{18}\)
\(\Leftrightarrow x< -\dfrac{5}{18}\)
Vậy bất phương trình có nghiệm là \(S=\left\{xIx< -\dfrac{5}{18}\right\}\)
c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)
\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]
= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)
= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3
= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x
= -8x4 + 5x3 + 24x2 – 6x
\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)
b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)
c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)
Thực hiện phép tính
\(5x^2\left(4x^2-2x+5\right)\)
\(=20x^4-10x^3+25x^2\)
b) \(\left(6x^2-5\right)\left(2x+3\right)\)
\(=6x^2\left(2x+3\right)-5\left(2x+3\right)\)
\(=12x^3+18x^2-10x-15\)