cho tam giác ABC vuông tại A, các đường phân giác cắt nhau tại I. Đường thẳng qua I vuông góc với AI cắt cạnh AB, Ac thứ tự là M,N
a) C/m : AI2 = BM .CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAN vuông tại A và ΔCMN vuông tại M có
CN chung
CA=CM
=>ΔCAN=ΔCMN
=>góc ACN=góc MCN
=>CN là phân giác của góc ACM
b: AN=NM
NM<NB
=>AN<NB
c: Xét ΔCME vuông tại M và ΔCAB vuông tại A có
CM=CA
góc C chung
=>ΔCME=ΔCAB
=>CE=CB
=>ΔCEB cân tại C
mà CN là phân giác
nên CN vuông góc EB
\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)
\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)
mà ABC= ACB(t/g ABC cân A)
\(\rightarrow ABM=ACN\)
Xét t/g ABM và t/g ACN
Có ^BAC chung
AC= AB(t/g ABC cân A)
^ABM= ^ACN(cmt)
\(\rightarrow\)t/g ABM = t/g ACN(gcg)
đề sai rồi
QUA C KẺ ĐƯỜNG VUÔNG GÓC VỚI AC, CHÚNG CẮT NHAU TẠI H
2 ĐIỂM C VÀ H TRÙNG NHAU thì sao lại có
CMR TAM GIÁC MHC VUÔNG CÂN
a: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có
AI chung
góc HAI=góc KAI
=>ΔAIH=ΔAIK
b: Xét ΔBIH và ΔCIK có
IB=IC
góc BIH=góc CIK
IH=IK
=>ΔBIH=ΔCIK
=>BH=CK