\(\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
giải giúp mik vói ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài rút gọn
\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)
\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)
Bài gpt:
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)
Đk:\(-1\le x\le3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)
Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm
Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2}{2}\)
c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))
\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-3}{3}\)
b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )
a,
\(\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}+\sqrt{\frac{\left(2-\sqrt{2}\right)^2}{\left(2+\sqrt{2}\right).\left(2-\sqrt{2}\right)}}\)
=\(\sqrt{2}+\frac{2-\sqrt{2}}{\sqrt{2}}\)
=\(\sqrt{2}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}}\)
=\(\sqrt{2}+\sqrt{2}-1\)
=\(2\sqrt{2}-1\)
còn tiếp
b=,\(\frac{6\sqrt{3}}{3}-\frac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}-\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\)
=\(6-1+\sqrt{3}-\sqrt{6}\)
=\(5+\sqrt{3}+\sqrt{6}\)
Bài 1:
a) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1\)
\(=3\sqrt{5}-1\)
b) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)
\(=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}\)
\(=\sqrt{3}+1\)
c) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right)\div\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\div\frac{\sqrt{5}+\sqrt{2}}{5-2}\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-3\)
Bài 2:
đk: \(x\ge1\)
Ta có: \(\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\frac{x+1}{16}}=5\)
\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x-1}-2\sqrt{x+1}=5\)
\(\Leftrightarrow-3\sqrt{x-1}=5\)
\(\Rightarrow\sqrt{x-1}=-\frac{5}{3}\) (vô lý)
=> PT vô nghiệm