1+1+1+2+3+5+9+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
\(\dfrac{1}{3}+\dfrac{5}{9}=\dfrac{6}{18}+\dfrac{10}{18}=\dfrac{16}{18}=\dfrac{8}{9}\)
\(\dfrac{1}{7}-\dfrac{1}{9}=\dfrac{9}{63}-\dfrac{7}{63}=\dfrac{2}{63}\)
\(3:\dfrac{5}{9}=3.\dfrac{9}{5}=\dfrac{27}{5}\)
\(3.\dfrac{5}{9}=\dfrac{15}{9}=\dfrac{5}{3}\)
\(\dfrac{1}{9}.\dfrac{9}{3}=\dfrac{1}{3}\)
\(\dfrac{1}{3}:\dfrac{1}{7}=\dfrac{7}{3}\)
\(9+\dfrac{9}{3}=9+3=12\)
\(4-\dfrac{2}{4}=4-\dfrac{1}{2}=\dfrac{7}{2}\)
\(\dfrac{1}{3}\) \(+\) \(\dfrac{5}{9}\) \(=\) \(\dfrac{3}{9}\) \(+\) \(\dfrac{5}{9}\) \(=\) \(\dfrac{3+5}{9}\) \(=\) \(\dfrac{8}{9}\)
\(\dfrac{1}{7}\) \(-\) \(\dfrac{1}{9}\) \(=\) \(\dfrac{9}{63}\) \(-\) \(\dfrac{7}{63}\) \(=\) \(\dfrac{9-7}{63}\) \(=\) \(\dfrac{2}{63}\)
\(\dfrac{1}{9}\) \(\times\) \(\dfrac{9}{3}\) \(=\) \(\dfrac{1\times9}{9\times3}\) \(=\) \(\dfrac{1}{3}\)
\(\dfrac{1}{3}\) \(\div\) \(\dfrac{1}{7}\) \(=\) \(\dfrac{1}{3}\) \(\times\) \(\dfrac{7}{1}\) \(=\) \(\dfrac{1\times7}{3\times1}\) \(=\) \(\dfrac{7}{3}\)
\(3\) \(\div\) \(\dfrac{5}{9}\) \(=\) \(\dfrac{3}{1}\) \(\div\) \(\dfrac{5}{9}\) \(=\dfrac{3}{1}\times\dfrac{9}{5}=\dfrac{3\times9}{1\times5}=\dfrac{27}{5}\)
\(3\times\dfrac{5}{9}=\dfrac{3}{1}\times\dfrac{5}{9}=\dfrac{3\times5}{1\times9}=\dfrac{5}{3}\)
\(9+\dfrac{9}{3}=\dfrac{9}{1}+\dfrac{9}{3}=\dfrac{27}{3}+\dfrac{9}{3}=\dfrac{27+9}{3}=\dfrac{36}{3}=12\)
\(4\) \(-\dfrac{2}{4}=\dfrac{4}{1}-\dfrac{2}{4}=\dfrac{16}{4}-\dfrac{2}{4}=\dfrac{14}{4}=\dfrac{7}{2}\)
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)
\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)
\(\Rightarrow A< B\)
Ta thấy : A= ( 1+5+5^2+.......+5^9)/(1+5+5^2+...... +5^8)= 5^9
B=(1+3+3^2+......+3^9)/(1+3+3^2+,,,,,,,,+3/9)=1
mÀ 5^9 > 1 . SUY RA A>B
Vậy A>B
mk ko chắc chắn lắm
k cho mk nhé
Tính:
2/7 + 5/7=1
8/15 + 6/15 =14/15
2/9 + 3/9 + 4/9=9/9=1
[ Không cần làm phép tính ]Điền vào ô trống <,>,= :
3/5 + 1/5 = 1/5 + 3/5
7/9 + 1/9 < 7/9 + 1/9 + 1/9
3/7 + 2/7 < 3/7 + 4/7
1/5 + 3/5 < 2/5 + 3/5
Tính:
2/7 + 5/7=1
8/15 + 6/15 =14/15
2/9 + 3/9 + 4/9=9/9=1
[ Không cần làm phép tính ]Điền vào ô trống <,>,= :
3/5 + 1/5 = 1/5 + 3/5
7/9 + 1/9 < 7/9 + 1/9 + 1/9
3/7 + 2/7 < 3/7 + 4/7
1/5 + 3/5 < 2/5 + 3/5
a) \(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{72}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{72}=1-1+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(=\dfrac{1}{5}-\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{5}{9}-\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{7}{13}-\dfrac{7}{13}-\dfrac{9}{16}\)
\(=\dfrac{9}{16}\)
2 = 1 + 1 6 = 2 + 4 8 = 5 + 3 10 = 8 + 2
3 = 1 + 2 6 = 3 + 3 8 = 4 + 4 10 = 7 + 3
4 = 3 + 1 7 = 1 + 6 9 = 8 + 1 10 = 6 + 4
4 = 2 + 2 7 = 5 + 2 9 = 6+ 3 10 = 5 + 5
5 = 4 + 1 7 = 4 + 3 9 = 7 + 2 10 = 10 + 0
5 = 3 + 2 8 = 7 + 1 9 = 5 + 4 10 = 0 + 10
6 = 5 + 1 8 = 6 + 2 10 = 9 + 1 1 = 1 + 0
bằng 23 bạn nhé!!!
1+1+1+2+3+5+9+1=23